Preferred Language
Articles
/
URaoi4cBVTCNdQwC3lVi
Connected Fibrewise Topological Spaces
...Show More Authors

Fibrewise topological spaces theory is a relatively new branch of mathematics, less than three decades old, arisen from algebraic topology. It is a highly useful tool and played a pivotal role in homotopy theory. Fibrewise topological spaces theory has a broad range of applications in many sorts of mathematical study such as Lie groups, differential geometry and dynamical systems theory. Moreover, one of the main objects, which is considered in fibrewise topological spaces theory is connectedness. In this regard, we of the present study introduce the concept of connected fibrewise topological spaces and study their main results.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Dec 24 2022
Journal Name
Wasit Journal For Pure Science
β*-Regular supra topological spaces
...Show More Authors

Form the series of generalization of the topic of supra topology is the generalization of separation axioms . In this paper we have been introduced (S * - SS *) regular spaces . Most of the properties of both spaces have been investigated and reinforced with examples . In the last part we presented the notations of supra *- -space ( =0,1) and we studied their relationship with (S * - SS *) regular spaces.

Publication Date
Sat May 05 2018
Journal Name
College Of Education For Pure Science Ibn-a L-haitham, University Of Baghdad
On Some New Topological Spaces
...Show More Authors

Publication Date
Fri May 31 2024
Journal Name
Journal Of Interdisciplinary Mathematics
Fibrewise locally micro sliceable and fibrewise locally micro-section able micro-topological space
...Show More Authors

The primary objective of this research be to develop a novel thought of fibrewise micro—topological spaces over B. We present the notions from fibrewise micro closed, fibrewise micro open, fibrewise locally micro sliceable, and fibrewise locally micro-section able micro topological spaces over B. Moreover, we define these concepts and back them up with proof and some micro topological characteristics connected to these ideas, including studies and fibrewise locally micro sliceable and fibrewise locally micro-section able micro topological spaces, making it ideal for applications where high-performance processing is needed. This paper will explore the features and benefits of fibrewise locally micro-sliceable and fibrewise locally

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
1st Samarra International Conference For Pure And Applied Sciences (sicps2021): Sicps2021
Feeble Hausdorff spaces in alpha-topological spaces using graph
...Show More Authors

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sat Mar 01 2008
Journal Name
Ibn Al– Haitham Journal For Pure And Applied Science
Some Results on Fiberewise Topological Spaces
...Show More Authors

In this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise closure topological spaces, fibrewise wake topological spaces, fibrewise strong topological spaces over B. Also, we introduce the concepts of fibrewise w-closed (resp., w-coclosed, w-biclosed) and w-open (resp., w-coopen, w-biopen) topological spaces over B; Furthermore we state and prove several Propositions concerning with these concepts.

Preview PDF
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
New Normality on Generalized Topological Spaces
...Show More Authors
Abstract<p>A space X is named a πp – normal if for each closed set F and each π – closed set F’ in X with F ∩ F’ = ∅, there are p – open sets U and V of X with U ∩ V = ∅ whereas F ⊆ U and F’ ⊆ V. Our work studies and discusses a new kind of normality in generalized topological spaces. We define ϑπp – normal, ϑ–mildly normal, & ϑ–almost normal, ϑp– normal, & ϑ–mildly p–normal, & ϑ–almost p-normal and ϑπ-normal space, and we discuss some of their properties.</p>
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Paths and Cycles in Alpha Topological Spaces
...Show More Authors
Abstract<p>This paper presents the concepts of prepaths, paths, and cycles in α-topological spaces and studies them in orderable spaces. Also, many relationships are proved with their equivalences using some properties in topological spaces like compactness and locally connectedness.</p>
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Tue Jan 01 2013
Journal Name
Mathematical Theory And Modeling
Fibrewise Near Compact and Locally Near Compact Spaces
...Show More Authors

In this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise near compact and fibrewise locally near compact spaces, which are generalizations of well-known concepts near compact and locally near compact topological spaces. Moreover, we study relationships between fibrewise near compact (resp., fibrewise locally near compact) spaces and some fibrewise near separation axioms.

Preview PDF
Publication Date
Tue Jun 01 2021
Journal Name
Int. J. Nonlinear Anal. Appl.
Fibrewise totally compact and locally totally compact spaces
...Show More Authors

In this paper we define and study new concepts of fibrwise totally topological spaces over B namely fibrewise totally compact and fibrwise locally totally compact spaces, which are generalization of well known concepts totally compact and locally totally compact topological spaces. Moreover, we study relationships between fibrewise totally compact (resp, fibrwise locally totally compact) spaces and some fibrewise totally separation axioms.

Scopus (1)
Scopus
Publication Date
Mon Dec 18 2023
Journal Name
Journal Of Iraqi Al-khwarizmi
Fibrewise Multi-Compact and Locally Multi- Compact Spaces
...Show More Authors

The primary objective of this paper is to introduce a new concept of fibrewise topological spaces on D is named fibrewise multi- topological spaces on D. Also, we entroduce the concepts of multi-proper, fibrewise multi-compact, fibrewise locally multi-compact spaces, Moreover, we study relationships between fibrewise multi-compact (resp., locally multi-compac) space and some fibrewise multi-separation axioms.

Preview PDF