Fibrewise topological spaces theory is a relatively new branch of mathematics, less than three decades old, arisen from algebraic topology. It is a highly useful tool and played a pivotal role in homotopy theory. Fibrewise topological spaces theory has a broad range of applications in many sorts of mathematical study such as Lie groups, differential geometry and dynamical systems theory. Moreover, one of the main objects, which is considered in fibrewise topological spaces theory is connectedness. In this regard, we of the present study introduce the concept of connected fibrewise topological spaces and study their main results.
We use the idea of Grill, this study generalized a new sort of linked space like –connected –hyperconnected and investigated its features, as well as the relationship between it and previously described notation. It also developed new sorts of functions, such as hyperconnected space, and identifying their relationship, by offering numerous instance and attributes that belong to this set. This set will serve as a starting point for further research into the sets many future possibilities. Also, we use some of the theorems and observations previously studied and relate them to the grill and the Alpha group, and benefit from them in order to obtain new results in this research. We applied the concept of Connected to them and obtained
... Show MoreThe objective of this paper is to define and introduce a new type of nano semi-open set which called nano -open set as a strong form of nano semi-open set which is related to nano closed sets in nano topological spaces. In this paper, we find all forms of the family of nano -open sets in term of upper and lower approximations of sets and we can easily find nano -open sets and they are a gate to more study. Several types of nano open sets are known, so we study relationship between the nano -open sets with the other known types of nano open sets in nano topological spaces. The Operators such as nano -interior and nano -closure are the part of this paper.
The concept of -closedness, a kind of covering property for topological spaces, has already been studied with meticulous care from different angles and via different approaches. In this paper, we continue the said investigation in terms of a different concept viz. grills. The deliberations in the article include certain characterizations and a few necessary conditions for the -closedness of a space, the latter conditions are also shown to be equivalent to -closedness in a - almost regular space. All these and the associated discussions and results are done with grills as the prime supporting tool.
In this paper we introduce a new type of functions called the generalized regular
continuous functions .These functions are weaker than regular continuous functions and
stronger than regular generalized continuous functions. Also, we study some
characterizations and basic properties of generalized regular continuous functions .Moreover
we study another types of generalized regular continuous functions and study the relation
among them
The aim of this paper is to introduce and study new class of fuzzy function called fuzzy semi pre homeomorphism in a fuzzy topological space by utilizing fuzzy semi pre-open sets. Therefore, some of their characterization has been proved; In addition to that we define, study and develop corresponding to new class of fuzzy semi pre homeomorphism in fuzzy topological spaces using this new class of functions.
In this paper, we introduce a new class of sets, namely , s*g-ï¡-open sets and we show that the family of all s*g-ï¡-open subsets of a topological space ) ,X( ï´ from a topology on X which is finer than ï´ . Also , we study the characterizations and basic properties of s*g-ï¡open sets and s*g-ï¡-closed sets . Moreover, we use these sets to define and study a new class of functions, namely , s*g- ï¡ -continuous functions and s*g- ï¡ -irresolute functions in topological spaces . Some properties of these functions have been studied .
The topic of supra.topological.spaces considered one of the important topics because it is a generalization to topological.spaces. Many researchers have presented generalizations to supra open sets such as supra semi.open and supra pre.open sets and others. In this paper, the concept of δ∼open sets was employed and introduced in to the concept of supra topology and a new type of open set was extracted, which was named S∼δ∼open. Our research entails the utilization of this category of sets to form a new concepts in these spaces, namely S∼δ∼limit points and S∼δ∼derive points, and examining its relationship with S∼open and S∼reg∼open. Based on this class of sets, we have introduced other new concepts such as S∼isolate
... Show Morestudied, and its important properties and relationship with both closed and open Nano sets were investigated. The new Nano sets were linked to the concept of Nano ideal, the development of nano ideal mildly closed set and it has been studied its properties. In addition to the applied aspect of the research, a sample was taken from patients infected with viral hepatitis, and by examining the infected people and using closed and open (nano mildly. and nano ideal mildly) sets, the important symptoms that constitute the core of this dangerous examining the infected people and using closed and open (nano mildly. and nano ideal mildly) sets, the important symptoms that constitute the core of this dangerous disease.
The goal of this article is to construct fibrewise w-compact (resp. locally w-compact) spaces. Some related results and properties of these concepts will be investigated. Furthermore, we investigate various relationships between these concepts and three classes of fibrewise w-separation axioms.
The aim of this paper is to introduce the concept of N and Nβ -closed sets in terms of neutrosophic topological spaces. Some of its properties are also discussed.