Fibrewise topological spaces theory is a relatively new branch of mathematics, less than three decades old, arisen from algebraic topology. It is a highly useful tool and played a pivotal role in homotopy theory. Fibrewise topological spaces theory has a broad range of applications in many sorts of mathematical study such as Lie groups, differential geometry and dynamical systems theory. Moreover, one of the main objects, which is considered in fibrewise topological spaces theory is connectedness. In this regard, we of the present study introduce the concept of connected fibrewise topological spaces and study their main results.
The purpose of this paper is to consider fibrewise near versions of the more important separation axioms of ordinary topology namely fibrewise near T0 spaces, fibrewise near T1 spaces, fibrewise near R0 spaces, fibrewise near Hausdorff spaces, fibrewise near functionally Hausdorff spaces, fibrewise near regular spaces, fibrewise near completely regular spaces, fibrewise near normal spaces and fibrewise near functionally normal spaces. Also we give several results concerning it.
Within that research, we introduce fibrewise fuzzy types of the most important separation axioms in ordinary fuzz topology, namely fibrewise fuzzy (T 0 spaces, T 1 spaces, R 0 spaces, Hausdorff spaces, functionally Hausdorff spaces, regular spaces, completely regular spaces, normal spaces, and normal spaces). Too we add numerous outcomes about it.
The main purpose of this paper is to introduce a some concepts in fibrewise totally topological space which are called fibrewise totally mapping, fiberwise totally closed mapping, fibrewise weakly totally closed mapping, fibrewise totlally perfect mapping fibrewise almost totally perfect mapping. Also the concepts as totally adherent point, filter, filter base, totally converges to a subset, totally directed toward a set, totally rigid, totally-H-set, totally Urysohn space, locally totally-QHC totally topological space are introduced and the main concept in this paper is fibrewise totally perfect mapping in totally top
Abstract. The minimal or maximal topological space is one of the topological spaces that we will employ in fibrewise locally sliceable and fibrewise locally sectionable. Now in this research I relied on some definitions specific to the research fibrewise maximal and minimal topological spaces. We will define a fibrewise locally minimal sliceable, fibrewise locally maximal sliceable, fibrewise locally minimal sectionable and fibrewise locally maximal sectionable, and I also clarified some examples of them and used them in characteristics by also clarifying them in diagrams.
The main idea of this research is to study fibrewise pairwise soft forms of the more important separation axioms of ordinary bitopology named fibrewise pairwise soft
In this paper we show that if ? Xi is monotonically T2-space then each Xi is monotonically T2-space, too. Moreover, we show that if ? Xi is monotonically normal space then each Xi is monotonically normal space, too. Among these results we give a new proof to show that the monotonically T2-space property and monotonically normal space property are hereditary property and topologically property and give an example of T2-space but not monotonically T2-space.
In this paper, a national grid-connected photovoltaic (PV) system is proposed. It extracts the maximum power point (MPP) using three-incremental-steps perturb and observe (TISP&O) maximum power point tracking (MPPT) method. It improves the classic P&O by using three incremental duty ratio (ΔD) instead of a single one in the conventional P and O MPPT method. Therefore, the system's performance is improved to a higher speed and less power fluctuation around the MPP. The Boost converter controls the MPPT and then is connected to a three-phase voltage source inverter (VSI). This type of inverter needs a high and constant input voltage. A second-order low pass (LC) filter is connected to the output of VSI to reduce t
... Show MoreThe importance of topology as a tool in preference theory is what motivates this study in which we characterize topologies generating by digraphs. In this paper, we generalized the notions of rough set concepts using two topological structures generated by out (resp. in)-degree sets of vertices on general digraph. New types of topological rough sets are initiated and studied using new types of topological sets. Some properties of topological rough approximations are studied by many propositions.