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Abstract. This paper presents the concepts of prepaths, paths, and cycles in 𝛼-topological spaces 

and studies them in orderable spaces. Also, many relationships are proved with their 

equivalences using some properties in topological spaces like compactness and locally 

connectedness. 

1. Introduction 

Graph theory is an important part of mathematics, so many sciences are interested in the applications of 

graphs in multiple aspects [1]. Paths and cycles are some of basic combinatorial properties of graphs 

which are defined in [2, 3, 4] in addition in general topology in [5, 6, 7]. Cyclically orderable spaces are 

defined and studied in [8], and some new concepts are presented in [9]. 

 Many years ago, many concepts had been studied in topological spaces, like 𝛼-open (𝛼-closed) sets 

[10] and they have generalized and developed to get another new concept with new relationships to 

extend the mathematics knowledges [11, 12, 13].  

 In this paper, we introduce the concepts of prepaths, paths, and cycles with the topological viewpoint 

in 𝛼-topological space. Also, we study their equivalence relationships with convexity and intervals in 

an orderable space. In addition compactness, order-complete, and locally connectedness. 

2. Preliminaries and basic definitions 

Through this section, any graph G contains the set of vertices VG and the set of edges EG. The non-empty 

set X = VG ∪ EG used to define a topology  τ on it which satisfied the general topological conditions, 

and for simplest (X, τ) refers to the topological space that we constructed it. For A ⊆ X, the interior and 

the closure of A in X with respect to τ are denoted by Int(A) and Cl(A). A sub set A is said to be an α-

open set, if it satisfied A ⊆ Int(Cl(Int(A))) for all A ⊆ X, and the complement of A in X is an α-closed 

set. It is clear that every open set is α-open, but in general the reverse is not true. We obtain an α-

topology τα by taking all α-open sets, and (X, τα) is an α-topological space. Furthermore, the interior 

of A in this space with respect to τα is denoted by α-Int(A) = ∪ { B | B ⊆ A, B is α-open}, while the 

closure of A denoted by α-Cl A) = ∩ { B | A ⊆ B, B is α-closed}. 

 We recall some basic definitions, remarks and facts in topology and graph. 

 

Definition 2.1: Let X be a topological space, then:  

 1) X is called connected space if there do not exist two disjoint, nonempty, open sets A and B such that 

X = A ∪ B. Otherwise, X is disconnected [7]. 

 2) X is called separated space if there are two unordered disjoint subsets of X such that each one is the 

complement of the other [7]. 
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 3) if A is a subset of X, then the intersection of Cl(A) and Cl(X - A) is called the boundary points of A 

[5]. 

 4) the component of X is the largest connected subspace of X, and an adherent component denoted as 

K(x) \ {x} is the component of  X contains x without x itself [3]. 

 5) X is said to be S1-space if every singleton is either open or closed [3]. 

 6) an α-topological space X is called an α-separated space if there are two unordered disjoint subsets 

of X, such that each one is the complement of the other [9]. 

 7) any family of X has the finite intersection property if the intersection is non-empty of any finite 

subfamily [7]. 

 8) if B ⊆ X , then the intersection of all α-open sets contained B is called α-surrounding set of B, and  

denoted by Bα⋄ [9]. 

 

Definition 2.2 [3]: If x is any point in  a connected topological space X, and X \ {x} is not connected, 

then x is called a cutpoint of X . Otherwise x is a non-cutpoint (that is an endpoint). 

 

Theorem 2.3 [3]: Let X be a topological space, then the next statements are equivalence: 

(A) ∀ x, y, z ∈ X: x < y < z, there exists a total order ≤ on X such that y disconnects x from z. 

(B) for each triple of points S in X, there exists a point in S which disconnects the other two. 

(C) ∀ x ∈ X, every adherent component of x denoted by K(x) \ {x}, has at most one endpoint, also any 

cutpoint is strongly cutpoint. 

 

Corollary 2.4 [3]: Let X be a connected topological space has at least four points, then X is S1-space, 

and any two non-incident points disconnect the others, but no one do. 

 

Definition 2.5 [3]: Let X be a connected topological space, then :  

1) X is a prepath denoted by P if |X| ≤ 2 with any topology except the indiscrete one, otherwise, X 

satisfies theorem (2.3) when |X| ≥ 3. 

2) a prepath is called a path if it is locally connected. 

3) X is a precycle if it satisfies corollary (2.4). 

4) a locally connected precycle is called a cycle. 

 

Facts 2.6 [3,7]: 

A) Let A be a connected subset of a connected topological space X, and K a component of X \ A. Then 

X \ K is connected. 

 B) Let Y be a subspace of a topological space X, then any component of Y is contained in a component 

of X. 

C) let X be a topological space with exactly two components, then {K1, K2} is a separation of X if and 

only if K1, K2 are the components of X.  

D) If C is a connected subset of a topological space, and A is a subset such that C ⊆ A ⊆ Cl(C), then A 

is connected. 

E) A topological space X is locally connected if and only if each component of each open set is open. 

 

Definition 2.7 [3]: If P is a prepath, then the interval topology on P is the collection of intervals of P 

which is a base for a this topology on P. 

 

Theorem 2.8 [3]: A prepath is locally connected if and only if the topology concurs with the interval 

topology. 

 

Definition 2.9 [3]: Let ≤ be a binary relation on X with a ∈ X, then ω(x) = {x ∈ X | x > a}, Ω (x) = {x 

∈ X | x ≥ a}, δ(x) = {x ∈ X | x < a} and ∆(x) = {x ∈ X | x ≤ a}. 
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Definition 2.10 [11]: Let ≤ be a total order on X, a subset of X of the form L ∩ U is an interval where 

U and L are taking one of the following forms: 

 1. X. 

 2. ω(a), for some a ∈ X and (δ(b), for some b ∈ X). 

 3. Ω(a), for some a ∈ X and (∆(b), for some b ∈ X). 

 

Definition 2.11 [3]: Let X be a totally ordered space. A subset S of X is said to be convex if for all a, b 

∈ S, and a < x < b, then x ∈ S for all x ∈ X.  

 

Theorem 2.12 [3]: Let S be a subset of a complete totally ordered set, then it is convex if and only if S 

is an interval. 

 

Definition 2.13 [3]: A convex subset containing exactly two points is called a jump. 

 

Definition 2.14 [3]: A convex subset S of a totally ordered space X is said to be a chain, if S is order 

isomorphic onto a convex subset of Z. 

 

Corollary 2.15 [3]: Every chain in a totally ordered space is contained in a maximal one. 

 

Corollary 2.16 [3]: Any two maximal chains in a totally ordered set are disjoint. 

 

Definition 2.17 [3]: Let X be any set, S ⊆ X with a binary relation on X, S is said to be strongly upper-

bounded (lower-bounded) if S has a maximum (respectively, minimum) M (respectively, m), where M 

(respectively, m) is strictly bounded from above (respectively, below). Also, S is strongly bounded if it 

is both strong (upper-bounded and lower-bounded). However, S is partially strongly bounded if it 

satisfies one of them. 

We notice that a chain is finite if it has both minimum and maximum. 

 

Corollary 2.18 [9]: Let X be an α-topological space, and x, y, z ∈ X. If y α-separates x and z, then y α-

disconnects x and z. 

 

Corollary 2.19 [9]: Let X be an α-connected topological space, x is an α-cutpoint of X, then only one of 

the next statements are holding for any α-separation {B1, B2}of  X \ {x}: 

1. {x} is α-closed, Bi is α-open in X, and α-Cl(Bi) = Bi∪{x} is α-closed, for i = 1,2  

2. {x} is α-open, Bi is α-closed in X, and Bi
α⋄ = Bi∪{x} is α-open, for i = 1, 2. 

 

Theorem 2.20 [9]: Let X be an α-connected topological space, x be an α-cutpoint of X, then there exist 

two nonempty α-closed sets F1, F2 in X, such that F1 ∪ F2 ∪ {x} = X, {F1 \ {x}, F2 \ {x}} is an α-

separation of X \ {x} and only one of the following statements are holding: 

1. {x} = (F1 ∩ F2) with {x} is an α-closed. 

2. {F1, F2, {x}} is a partition of X with {x} is an α-open. 

 

Theorem 2.21 [9]: If X is an α-connected topological space, h is an α-hyperedge of X with finite number 

of α-boundary points, then each α-component of X \ {h} includes an α-boundary point of h. Specifically, 

X \ {h} contains at most two α-connected components, when h is an edge. 

 

Corollary 2.22 [9]: Let X be an α-connected topological space, x is a cutedge, then an α-adherent 

component Kα(x) \ {x} contains exactly two α-connected components, each α-component consisting of 

one α-boundary point of x. 
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Definition 2.23 [3]: An ordered pair (A, B) is said to be a gap, if A and B have no maximum and no 

minimum respectively. 

 

Fact 2.24 [3]: Any total order has no gaps if and only if it is order-complete. 

 

Definition 2.25 [3]: Let X be any set, a triplex relation S ⊆ X3 is said to be a cyclic order on X if: 

 * (a, b, c) ∉ S where a ≠ b ≠ c ≠ a if and only if (c, b, a) ∈ S 

 * if (a, b, c) ∈ S, then (b, c, a) ∈ S 

 * if (a, b, c) ∈ S and (a, c, d) ∈ S, then (a, b, d) ∈ S 

 If S is a cyclic order on X and Y is a subset of X, then there exists a cyclic order S∗ =  S ∩  Y3 inherited 

on Y by the classes contains all its elements in Y. 

 Furthermore, the ordered space S∗ is called a cyclic subsequence of S, where S is finite. 

3. Prepaths in Alpha Topological Spaces 

 In this section, we introduce some concepts of α-topological spaces and investigate the relationships 

between them. 

     The first important theorem can be proven in the same way as in [3], we need it here to define an α-

prepath and in the proof of theorem (3.4). 

 

Theorem 3.1: Let X be a topological space, then the next statements are equivalents: 

(A) ∀ x, y, z ∈ X: x < y < z, there exists a total order ≤ on X such that y α-disconnects x from z. 

(B) For each triple of points S in X, there exists a point in S which α-disconnects the other two. 

(C) ∀ x ∈ X, every α-adherent component of x denoted as Kα(x) \ {x}, has at most one endpoint, also 

any α-cutpoint is strongly α-cutpoint. 

 (*) if X is an α-connected in this theorem, then the 3rd statement means that for all x ∈ X,  X \ {x} has 

mostly two α-component contains one endpoint in each one. 

 

Definition 3.2: An an 𝛼-connected topological space X is said to be an 𝛼-prepath denoted by 𝑃𝛼 if |X| ≤ 

2 with any 𝛼-topology except the indiscreet one, otherwise |X| ≥ 3 and X satisfies the conditions of 

theorem (3.1). 

 

Definition 3.3: An 𝛼-topological space X is said to be 𝛼-topologized graph if: 

 * any singleton is either 𝛼-open or 𝛼-closed. 

 * X has at most two 𝛼-boundary points, for all x ∈ X. 

 The next theorem shows that an 𝛼-prepath is always an 𝛼-topologized graph.  

 

Theorem 3.4: Let X be an 𝛼-connected topological  space, if X is an 𝛼-prepath then: 

 1. X is an 𝛼-topologized graph.  

 2. Every edge in X is a cutedge or a loop which is an endpoint. 

 

Proof: Suppose X is an 𝛼-prepath, then X has many cases. Firstly, X is trivially an 𝛼-topologized graph 

if it is an empty set because it is 𝛼-clopen . Secondly, When X is a singleton element, so it has a unique 

point and it is 𝛼-open and 𝛼-closed. Thirdly, when X have two points, we can get exactly two 𝛼-

connected topologies, the first one is the indiscrete 𝛼-topology which excepted in definition (3.2) and 

the second one is an 𝛼-topologized graph with exactly one vertex with one loop. 

Finally, when X has at least three points, we must prove it is an 𝛼-topologized graph by satisfying the 

conditions of definition (3.3). Now, we discuss being x is an 𝛼-cutpoint or an 𝛼-endpoint. Suppose that 

x is an 𝛼-cutpoint, it is either 𝛼-open or 𝛼-closed by corollary (2.19). Furthermore, all 𝛼-cutpoints are 

strong 𝛼-cutpoints by theorem (3.1 part C). Thus, when x is an 𝛼-open, we have that an 𝛼-boundary of 
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x contains exactly two points by theorem (2.21). So, x is a proper edge, that is a cutedge because x is an 

𝛼-cutpoint. 

 Now, suppose that x is an endpoint, so X must has at least one 𝛼-cutpoint, and  mostly two endpoints 

because it has at least three points. Let y be any 𝛼-cutpoint in X, and 𝐴𝑦, 𝐵𝑦 be the 𝛼-connected 

components of X \ {y}. Define C as the set of all 𝛼-cutpoints, and = ⋂ 𝐴𝑦
̅̅̅̅

𝑦∈𝐶  , so 𝑥 ∈ 𝐴𝑦 implies that 

𝑥 ∈ 𝑊. 

 Now, assume that y is another endpoint in W, such that 𝑦 ≠ 𝑥, and take another point to be an 𝛼-

cutpoint like w. Since y ∈ W, we have that 𝑦 ∈ 𝐴𝑤
̅̅ ̅̅ , by theorem (2.20)  which leads to either 𝑦 ∈ 𝐴𝑤 or 

y = w. That means x and y lie in the same 𝛼-connected component of X \ {w}, that is a contradiction 

with (*) of theorem (3.1) since the component contains two endpoints together. Also the second choice  

impossibly hold, because y an endpoint and w is an 𝛼-cutpoint. Hence, W does not contain any endpoints 

excepting x. 

Suppose that 𝑦1 ≠ 𝑦2 are two 𝛼-cutpoints in W. Clearly, x cannot 𝛼-disconnect  𝑦1 and 𝑦2 because 

it is an endpoint. So, for the three elements  {x, 𝑦1, 𝑦2}, if 𝑦1 𝛼-disconnects x with 𝑦2, then 𝑦2 ∉ 𝐴𝑦1
 

implies 𝑦2 ∉ 𝑊 (otherwise if 𝑦2 𝛼-disconnects x with 𝑦1, then 𝑦1 ∉ 𝐴𝑦2
 implies 𝑦1 ∉ 𝑊), by using 

(3.1B) is a contradiction. So, W contains mostly one element besides x, and it is an 𝛼-cutpoint. If W = 

{x}, then {x} is 𝛼-closed, since it is the intersection of 𝛼-closed sets. Otherwise, when W = {x, y} for 

some 𝛼-cutpoint y, 𝑦 ∈ 𝐴𝑦. Hence 𝐴𝑦 = {x} is 𝛼-open and 𝛼-Cl(x) = {x, y} by corollary (2.19), (that is 

a loop). 

 

Corollary 3.5: Let X be an 𝛼-connected topological space, x, y, z ∈ X, then only one of them 𝛼-

disconnects the others. 

Proof: Suppose that y 𝛼-disconnect x and z, and assume that 𝐾𝛼(𝑥) define the 𝛼-component of X \ {y} 

which contains x. So X \ 𝐾𝛼(𝑥) is an 𝛼-connected set containing y and z without x by (2.6A). So x can 

not 𝛼-disconnect y from z. By the same way, z cannot 𝛼-disconnect x from y.  

The next theorem is proved in [9], and it is very useful in our proofs. 

 

Theorem 3.6: If X be an 𝛼-connected topological space, x is an 𝛼-cutpoint of X. If {A, B} is an 𝛼-

separation of X \ {x}, then A ∪ {x} is an 𝛼-connected (so as B). 

The next theorem shows that 𝛼-disconnected and 𝛼-separated are equivalent in 𝛼-connected prepaths. 

 

Theorem 3.7: Let X be an 𝛼-connected topological space, then the following statements are equivalent:                                                         

 (1) ∀ x, y, z ∈ X, there exists a total order ≤ on X such that, if x < y < z, then y is a strong 𝛼-cutpoint 

and 𝛼-disconnects x from z. 

 (2) ∀ x, y, z ∈ X, there exists a total order ≤ on X such that, if x < y < z, then y  𝛼-separates x from z. 

 (3) ∀ x, y, z ∈ X, there exists a total order ≤ on X such that, if x < y < z, then y 𝛼-disconnects x from 

z. 

 (4) For any three disjoint points, there exists exactly one of them that 𝛼-disconnects the others. 

 (5) For any three disjoint points, there exists exactly one of them that 𝛼-separates the others. 

 (6) For any three disjoint points, there exists exactly one strong 𝛼-cutpoint of them that 𝛼-disconnects 

the others. 

 

Proof: Firstly, we should prove the equivalent of the first three statements, and later we should prove 

the last three of them. 

(1) ⇒ (2) ⇒ (3) ⇒ (1)  

(1) ⇒ (2); Let x < y < z, then X \ {y} has exactly two 𝛼-connected components, 𝐾𝑥, 𝐾𝑧 such that x ∈ 

𝐾𝑥, z ∈ 𝐾𝑧. So we obtain that {𝐾𝑥 , 𝐾𝑧} is an 𝛼-separation of  X \ {y}, and y 𝛼-separates x and z by facts 

(2.6C) 

(2) ⇒ (3); This prove is coming immediately from corollary (2.18). 
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(3) ⇒ (1); Since y 𝛼-disconnects x from z by (3), implies that y is an 𝛼-cutpoint, and a strong 𝛼-cutpoint 

by using theorem (3.1). 

(6) ⇒ (5) ⇒ (4) ⇒ (6) 

(6) ⇒ (5); Take any three disjoint points such that one of them is strong 𝛼-cutpoint, so it 𝛼-disconnects 

the others. Also it 𝛼-separetes them. 

(5) ⇒ (4); This prove is coming immediately from corollary (2.18). 

(4) ⇒ (6); Since there exists one point that 𝛼-disconnects the others, implies that it is an 𝛼-cutpoint, and 

a strong 𝛼-cutpoint by using theorem (3.1). 

Now to prove the equivalent between the two sets of statements, we shall prove that (3) and (4) are 

coincides. 

(3) ⇔ (4): This proves is direct from conditions of theorem (3.1).  

 

Corollary 3.8: Let X be an 𝛼-connected topological space, and the total order ≤ on X is satisfying the 

2nd condition of theorem (3.7). If y 𝛼-separates x from z, then either x < y < z, otherwise  z < y < x. 

Proof: Since y 𝛼-separates x from z, then there exists an 𝛼-separation {H, K} of X \ {y} such that x ∈ 

H and z ∈ K. So x < y < z. But, if the result not hold, assume that y < x < z, (x < z < y). Then x should 

𝛼-separate y and z (z should 𝛼-separate x and y). But by theorem (3.6) {y} ∪ K (H ∪{y}) is an 𝛼-

connected subset containing y and z but not x (containing x and y but not z), this is contradiction. 

 

Definition 3.9: Let 𝑃𝛼 be any 𝛼-prepath, then every total order defined on 𝑃𝛼 is said to be 𝛼-compatible 

with 𝑃𝛼when it is satisfying conditions of theorem (3.7). 

 

Theorem 3.10: Any subset B of an 𝛼-prepath 𝑃𝛼 is an 𝛼-connected if and only if B is an 𝛼-prepath. 

Moreover, any compatible total order of an 𝛼-connected subset of 𝑃𝛼 is exactly this one inherits from 

𝑃𝛼. 

 

Proof: Let B be an 𝛼-prepath subset of an 𝛼-prepath X, if B is an 𝛼-disconnected, then that is 

contradiction with theorem (3.1), so B is an 𝛼-connected. 

Conversely, let B is an 𝛼-connected subset, and ≤𝐵 is inherited total order by B from a compatible one 

≤ on 𝑃𝛼. Let x, y, z ∈ B and x <𝐵 y <𝐵 z, implies that x < y < z and y 𝛼-disconnects x from z, that is 

mean, each of x and z belong to different 𝛼-components of X \ {y}, so they belong to different 𝛼-

connected components of B \ {y}. Hence ≤𝐵 on B satisfies the 3rd condition of the theorem (3.7). 

 

Definition 3.11: Let 𝑃𝛼 be an 𝛼-prepath, a point x ∈ 𝑃𝛼 is internal if it is not extremum with respect to a 

compatible total order, and terminal otherwise, so the 𝛼-cutpoints are the internal points, and the 

endpoints are the terminal.  

 

Definition 3.12: An 𝛼-prepath is said to be 𝛼-bounded, if the compatible total orders are 𝛼-bounded. 

That means, it is an 𝛼-prepath with two terminal points. Moreover, some compatible total order is 𝛼-

bounded from above (respectively, below) but not from below (respectively, above), the 𝛼-prepath is 

said to be one-sided. 

 

Definition 3.13: Let X be an 𝛼-topological space, a, b ∈ X, a subset 𝑃𝛼 of X is said to be an ab- 𝛼-prepath 

if it is a (bounded) 𝛼-prepath with two terminal points a minimum point and b maximum point.  

 

Definition 3.14: Let X be an 𝛼-topological space, X is said to be an ab-𝛼-prepath connected space, if X 

contains an 𝛼-prepath for every a, b ∈ X. 

 

Theorem 3.15: Let 𝑃𝛼 be 𝛼-prepath, then a point x ∈ 𝑃𝛼 is an endpoint if and only if it is an extremum 

with respect to a compatible total order. Furthermore, very 𝛼-prepath has at most two endpoints. 
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Proof: Let x ∈ 𝑃𝛼 be an endpoint, to prove x is extremum. Assume that x is not extremum (not minimum 

nor maximum) with respect to a compatible total order ≤, then there exist two points a, b such that a 

< x < b, so we obtain that x is an 𝛼-cutpoint. That is a contradiction, hence every non 𝛼-cutpoint is a 

maximum or a minimum. Conversely, if x is not an endpoint, it is an 𝛼-cutpoint, then there exists at 

least two points a, b such that x 𝛼-separates them. So we get a < x < b (b < x <  a) by corollary (3.8), 

implies that x is not maximum nor minimum (not extremum). That is contradicting the hypothesis, hence 

X is an endpoint. 

Let 𝑃𝛼 be 𝛼-prepath, and has three distinct endpoints a, b, c in X. Then any two of them must be 𝛼-

disconnected by the third one, which became an 𝛼-cutpoint. That is contradiction. Therefore, 𝑃𝛼 must 

has at most two endpoints. 

The next corollary shows that if x is an 𝛼-cutpoint, then either 𝛿(x) or ∆(x)((ω(x) or  𝛺(x)) is 𝛼-open. 

 

Corollary 3.16: Let 𝑃𝛼 be 𝛼-prepath, x ∈ 𝑃𝛼 be an internal point with a fixed compatible total order. 

Then one of the following must satisfy: 

(1) x is an edge, ∆(x) and 𝛺(x) are 𝛼-open, 𝛿(x) and ω(x) are 𝛼-closed, (𝛿(𝑥))𝛼⋄ = ∆(x) and (𝜔(𝑥))𝛼⋄ 

= 𝛺(x). 

(2) x is a vertex, ∆(x) and 𝛺(x) are 𝛼-closed, 𝛿(x) and ω(x) are 𝛼-open, 𝛼-Cl(𝛿(x)) = ∆(x) and 𝛼-Cl(ω(x)) 

= 𝛺(x). 

 

Proof: Assume x is an internal point, and fixed ≤ as a compatible order, then x is an 𝛼-cutpoint and a 

strong 𝛼-cutpoint by theorem (3.1). Suppose that 𝐾1, 𝐾2 are the two 𝛼-components of 𝑃𝛼\ {x}. So we 

can  prove that {𝐾1, 𝐾2} = {𝛿(x), ω(x)}, by using definition (2.17). But, if not, then there exist two 

points a ∈ 𝐾1, b ∈ 𝐾2 such that a < x < b. Hence x is 𝛼-disconnected a from b. This is contradiction, 

since 𝐾1, 𝐾2 are two 𝛼-connected sets containing  a and b respectively but not x. 

 

Definition 3.17: Let 𝑃𝛼 be an 𝛼-prepath with a fix compatible order, and let a ∈ 𝑃𝛼. The 𝛼-open tail from 

a upwards (respectively, downwards) is the largest 𝛼-open subset of 𝑃𝛼 contained in 𝛺(a) (∆(a)). 

 - If a is a terminal point, we have two cases: when a is maximum then the 𝛼-open tail from a upwards 

is 𝑃𝛼, and when a is minimum the 𝛼-open tail from a downwards is {a} where {a} is 𝛼-open or equal ∅ 

if not. 

 - If a is an 𝛼-cutpoint, the 𝛼-open tail from a upwards (downwards) is 𝜔(x) (𝛿(x)) or 𝛺(x) (∆(x)) 

depending on what condition is satisfied from corollary (3.16). 

 

Definition 3.18: Let 𝑥1, 𝑥2 be any two points in an 𝛼-topologized hypergraph H, then{𝑥1, 𝑥2} is said to 

be an edge-vertex incident pair if any one of them is a vertex and the other is an incident edge. 

 

Theorem 3.19: If 𝑃𝛼 is an 𝛼-prepath, then: 

1. {x, y} is an edge-vertex incident pair if and only if it  is a jump with respect to a compatible total 

order. 

2. any terminal edge exactly has one endvertex, and any internal edge has exactly two endvertices. 

 

Proof: Suppose that e is an edge with an incident vertex v, and {e, v} is not a jump. If e < v or (v < e), 

this leads to the existence of a point x such that e < x < v or (v < x < e) . So we obtain y is an 𝛼-

cutpoint, by using theorem (3.15), and (x,∞) is an 𝛼-open set containing v but not e, by corollary (3.16) 

and definition (3.17).That is a contradiction, since e and v are incident. 

Conversely, Let ≤ be an compatible total order, and {x, y} a jump. Assume that x < y or (y < x), then 

𝑃𝛼 = ∆(x) ∪  𝛺(y), where they are disjoint. If x, y are both edges, then both these sets are 𝛼-open, but if 

they are both vertices, then both these sets are 𝛼-closed, by corollary (3.16). Hence, {∆(x), 𝛺(x)} is an 

𝛼-separation of 𝑃𝛼, which contradiction with being 𝑃𝛼 is 𝛼-connected. 
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Since every edge is a cutedge or a loop from theorem (3.4). So an internal edge is a cutedge, by theorem 

(3.15). Therefore, it has exactly two endvertices by corollary (2.22), and since terminal points are not 𝛼-

cutpoints, then they are loops. Therefore, they are incident with exactly one vertex.  

 

Corollary 3.20: Let 𝑃𝛼 be an 𝛼-prepath, 𝐴 be a convex subset of 𝑃𝛼 with at least two points. If a ∈ 𝐴\𝐴𝛼°, 

then a is an extremum point for A, but not for 𝑃𝛼. 

 

Proof: Let ≤ be an compatible total order for 𝑃𝛼. Assume that there exist two points in A such that a 

between them, (that is ∃ x, y ∈ A, where x < a < y). Then 〈𝑥, 𝑦〉 is 𝛼-open contains a, but A is convex, 

then a is contained in A, so a ∈ 𝐴𝛼°, that is a contradiction. Therefore, a is an extremum point of A. To 

prove that a is not an extremum point of 𝑃𝛼 let b be another point in A. By contradiction, let a be a 

minimum point of 𝑃𝛼, then [a, 𝑏⟩ = (-∞, 𝑏⟩ is an 𝛼-open subset of A containing a. That is contradiction, 

hence a cannot be a minimum for 𝑃𝛼. By the same way a can not be a maximum. Therefore, a is not an 

extremum for 𝑃𝛼. 

 The following theorem can be proven similarly as in [3], and we need it in the subsequence details of 

proofs. 

 

Theorem 3.21: A subset of an 𝛼-prepath is an 𝛼-connected if and only if it is convex. 

Corollary 3.22: If 𝑃𝛼 is an 𝛼-prepath and ≤ a compatible total order, then ≤ is an order-complete. 

 

Proof: By way of contradiction, we must prove that there are no gaps, let (A, B) be a gap, and A must 

be convex, since (A, B) is a cut. If A is not 𝛼-open, then there exists some point a ∈ 𝐴 \𝐴𝛼° by corollary 

(3.20). So a is an extremum for A, and the same as B, which is contradicting the definition of a gap 

definition (2.23). Therefore A and B are 𝛼-open, then {A, B} is an 𝛼-separation of the 𝛼-connected 

space 𝑃𝛼, that is contradiction. 

 

Corollary 3.23: Let X be an 𝛼-prepath, M ⊆ X, then the next statements are equivalent:                    

(1) M is 𝛼-connected.         

(2) M is an 𝛼-prepath.         

(3) M is convex. 

(4) M is an interval. 

Proof: We prove (1) ↔ (2) by using theorem (3.10), and (2) ↔ (3) by using theorem (3.21), and (3) ↔ 

(4) by using theorem (2.12), so to prove (4) ↔ (1) we use corollary (2.22) and corollary (3.22).  

 

Theorem 3.24: Let X be an 𝛼-topological space, a, b ∈ X, then the following statements are equivalent: 

(1) For all x ∈ X \ {a, b}, x 𝛼-disconnects a from b. 

(2) For all S ⸦ X, such that {a, b}⊆ S, S is 𝛼-disconnected. 

 

Proof: Suppose that (1) satisfies, assume that S ⸦ X contains {a, b}. Take x ∈ X \ S, and define W = X 

\ {x}. Let a ∈ 𝑆𝑎, b ∈ 𝑆𝑏 be the 𝛼-connected components of S containing a, b. So a ∈ 𝑊𝑎, b ∈ 𝑊𝑏 is the 

𝛼-connected components of W containing a, b. Since S ⊆ W, we get that 𝑆𝑎 ⊆ 𝑊𝑎 and 𝑆𝑏 ⊆ 𝑊𝑏 by the 

fact that 𝛼-connected components form a partition of the point set of an 𝛼-topological space and facts 

(2.6B). But, 𝑊𝑎 and 𝑊𝑏 are different, then 𝑆𝑎 and 𝑆𝑏 are disjoint. So, S is 𝛼-disconnected, we get (2). 

 Now suppose that (2) holds, Assume that x ∈ X \ {a, b}. So, if S = X \ {x} ⸦ X  contains a, b, then S is 

𝛼-disconnected. Assume that a, b are in the same 𝛼-connected component K of X \ {x}. So K is a subset 

of X \ {x} containing a, b, and hence K is 𝛼-connected, that is a contradiction. So a and b must contain 

in a different 𝛼-connected components of X \ {x}. 

4. Paths and Cycles in Alpha Topologica Spaces 
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 In this section, we introduce some basic definitions and facts on 𝛼-topological spaces which we need it 

to define our new concepts. Moreover, we study some important relationships in 𝛼-space. 

 

Definition 4.1: Let 𝑃𝛼 be an 𝛼-prepath, we can define the interval 𝛼-topology on 𝑃𝛼 by taking a subbase 

contains X and all open intervals (−∞, x), (x, ∞) on 𝑃𝛼 for some vertex x and we can obtain (the base, 

the topology, and the 𝛼-topology) of 𝑃𝛼. We should refer  to that the 𝛼-open sets in the interval 𝛼-

topology are 𝛼-open sets in general topology on 𝑃𝛼. 

 

Corollary 4.2: An 𝛼-topological space X is a locally 𝛼-connected if and only if each component of each 

𝛼-open set in X is 𝛼-open. 

 

Proof: Let K be a component of 𝛼-open set U in a locally 𝛼-connected space X, x ∈ K. So there is an 𝛼-

open connected set V such that x ∈ V ⸦ U, and V ⸦ K, therefor K is 𝛼-open. 

Conversely, assume that the components of every 𝛼-open set is 𝛼-open in X. Let U be any 𝛼-open 

neighborhood containing x in X, then there is an 𝛼-component K containing x of U which is an 𝛼-open 

connected neighborhood in U. That is, x ∈ K ⸦ U. Hence, X is locally 𝛼-connected. 

 

Theorem 4.3: An 𝛼-prepath is locally 𝛼-connected if and only if the 𝛼-topology concurs with the interval 

𝛼-topology. 

 

Proof: Let 𝑃𝛼 be an 𝛼-prepath, and let U be an 𝛼-open set in 𝑃𝛼 containing x, assume that 𝑃𝛼 is locally 

𝛼-connected. We have to show that U contains an 𝛼-open interval containing x. By corollary (3.23), we 

obtain that 𝐾𝑈(𝑥) is an interval, because it is an 𝛼-connected of 𝑃𝛼. Since 𝑃𝛼 is locally 𝛼-connected and 

U is 𝛼-open, the components 𝐾(𝑈)(𝑥) is 𝛼-open by corollary (4.2). 

Conversely, assume that 𝑃𝛼 has the interval 𝛼-topology and U ⊆ 𝑃𝛼 is 𝛼-open. Then the union of every 

𝛼-open intervals is 𝛼-open, means, ⋃ 𝐽𝑖𝑖∈𝐼  where the 𝐽𝑖 are 𝛼-open intervals. Now, if x ∈ K, where K is 

any 𝛼-component of U, is an 𝛼-open interval. So we get x ∈ 𝐽𝑖 for some i. But 𝐽𝑖 is an 𝛼-connected 

subset of U, therefore 𝐽𝑖 ⊆ K. Hence, 𝑃𝛼 is locally 𝛼-connected. 

 

Definition 4.4: Let X be an 𝛼-connected topological space, an 𝛼-prepath is called an 𝛼-path if it is locally 

𝛼-connected. 

 If we have an 𝛼-prepath say ab, we can express it by ab-𝛼-prepath, and it is an ab-𝛼-path if it is locally 

𝛼-connected. If there exists an 𝛼-topology on X such that X is an 𝛼-prepath(𝛼-path) with a total order 

≤ is compatible with X, then ≤ on X is an 𝛼-prepath(𝛼-path) compatible. 

 

Theorem 4.5: Let X be an 𝛼-connected topological space with the interval 𝛼-topology 𝜏𝛼
∗, and X is an 

𝛼-prepath, then X is an 𝛼-path with compatible orders, and it has the same 𝛼-connected subsets. 

 

Proof: Let 𝜏𝛼
∗ be the interval 𝛼-topology on X, then any 𝛼-separation in 𝜏𝛼

∗ should be an 𝛼-separation 

in 𝜏𝛼, Since 𝜏𝛼
∗ ⊆ 𝜏𝛼. Hence, X is 𝛼-connected with respect to 𝜏𝛼

∗.  

Assume that ≤ is a compatible total order on X with respect to 𝜏𝛼. Let x, y, z be any three points on X 

such that x < y < z. If y is a vertex, then we have an 𝛼-separation {(−∞, y), (y, ∞)} of X \ {y}, and y 𝛼-

separates x from z. But, if y is an edge (not external), then it has a previous vertex a and a latter vertex 

b. So we have an 𝛼-separation {(−∞, b) \ {y}, (a, ∞) \ {y}} of X \ {y}. Hence, X is an 𝛼-prepath 

compatible with the same total order ≤ with respect to 𝜏𝛼
∗. That is implying that the intervals with 

respect to the orders compatible with 𝜏𝛼
∗ are exactly the intervals with respect to the original 𝛼-

topology 𝜏𝛼. Hence, X is locally 𝛼-connected with respect to 𝜏𝛼
∗, by (4.3), that is, (X, 𝜏𝛼

∗) is an 𝛼-path. 

 The next definition was introduced in [13]. 

 



Ibn Al-Haitham International Conference for Pure and Applied Sciences (IHICPS)
Journal of Physics: Conference Series 1879 (2021) 022103

IOP Publishing
doi:10.1088/1742-6596/1879/2/022103

10

 
 

Definition 4.6: An 𝛼-topological space X is said to be 𝛼-compact if every 𝛼-open cover has a finite 

subcover. 

 

Corollary 4.7: If X is an 𝛼-topological space, then the following statements are equivalent: 

 (1) X is 𝛼-compact. 

 (2) If every family of 𝛼-closed sets has the finite intersection property, then it has a non-empty 

intersection. 

Proof: (1) → (2) Let X be an 𝛼-compact space, by contradiction, let {𝐹𝑖| 𝑖 ∈ 𝐼} be a collection of 𝛼-

closed sets such that ⋂ 𝐹𝑖 = ∅𝑖∈𝐼 . Then we have an 𝛼-open cover {X - 𝐹𝑖| 𝑖 ∈ 𝐼}. Since X is 𝛼-compact, 

then there exists a finite subcover {X - 𝐹𝑖}𝑖=1
𝑛 , and ⋂ 𝐹𝑖 = ∅𝑛

𝑖=1 . That is contradicting with the finite 

intersection property, hence ⋂ 𝐹𝑖 ≠ ∅𝑖∈𝐼 . 

(2) → (1) Let {𝑈𝑖| 𝑖 ∈ 𝐼} be an 𝛼-open cover of X such that X = ∪ {𝑈𝑖| 𝑖 ∈ 𝐼} and does not have a finite 

subcover, then X - {𝑈𝑖| 𝑖 ∈ 𝐼} = {𝐹𝑖| 𝑖 ∈ 𝐼} is a nonempty 𝛼-closed sets. Hence ⋂ 𝐹𝑖 ≠ ∅𝑛
𝑖=1  when 

⋂ 𝐹𝑖 ≠ ∅𝑖∈𝐼  because of the finite intersection property by (2). So X - ∩ {𝐹𝑖| 𝑖 ∈ 𝐼}  = ∪ {𝑈𝑖|𝑖 ∈ 𝐼}, 

moreover X - ⋂ 𝐹𝑖  𝑛
𝑖=1 = ⋃ 𝑈𝑖

𝑛
𝑖=1  which is a finite subcover of {𝑈𝑖| 𝑖 ∈ 𝐼}. Hence, X is an 𝛼-compact. 

 The next theorem is very important because it shows the relation between compactness and locally 

connectedness in 𝛼-topological spaces. Therefore, we take it here without proof, so we can write its 

proof in another place. 

 

Theorem 4.8: If 𝑃𝛼 is an 𝛼-bounded prepath, then 𝑃𝛼 is 𝛼-compact if and only if it is locally 𝛼-connected. 

 From the above theorem, we can conclude the next corollary. 

 

Corollary 4.9: Let 𝑃𝛼 be an 𝛼-bounded prepath, then the next statements are equivalent: 

 (1) 𝑃𝛼 is 𝛼-compact. 

 (2) 𝑃𝛼 is locally 𝛼-connected. 

 (3) The 𝛼-topology of  𝑃𝛼 concurs with the interval 𝛼-topology. 

 

Proof: we can see the equivalence the above statements directly by using theorem (4.8) and theorem 

(4.3). 

 

Definition 4.10: An 𝛼-topological space X is said to be 𝛼-𝑆1 space if every singleton is either 𝛼-open or 

𝛼-closed. 

 We introduced the next theorem to use it when we define precycle and cycle. 

 

Theorem 4.11: If X is an 𝛼-connected topological space with at least four points, then the following 

statements are equivalent: 

 1. For every four points, no one 𝛼-disconnects the remaining, however, some two 𝛼-disconnect, and 

are 𝛼-disconnected by the others. 

 2. There exists a cyclic order on X such that for every four points a, b, c, d, we have that a, c 𝛼-

separate(𝛼-disconnect) b and d if and only if 〈𝑤, 𝑥, 𝑦, 𝑧〉 is a cyclic subsequence for some choice of w, 

y ∈ {a, c} and x, z ∈ {b, d}. 

 3. X is 𝛼-𝑆1, and for every finite subset A, the complement of A and A have the same number of 𝛼-

connected components. 

 4. X is 𝛼-𝑆1 and every two non-incident points 𝛼-disconnects, but no one point do. 

 

Proof: (1) → (2) Let S be a cyclic order on X, and a, b, c, d, be disjoint points with a, c 𝛼-separate(𝛼-

disconnect) b and d. Now suppose that Y ⊆ X, then Y inherits a cyclic order S* = S ∩ Y4 such that all 

quadruple with entries in Y. Since S is finite, then the obtaining ordered space is a cyclic subsequence 

of S. By (1), since a, c 𝛼-separate(𝛼-disconnect) b and d, that means they are belong to different 

component. So, there is four points w, x, y, z in Y such that {w, y} = {a, c} ∩ Y, and {x, z} = {b, d} ∩ 
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Y, since Y is a subspace of X. That leads to w, y ∈ {a, c} and x, z ∈ {b, d}, because they belong to the 

intersection. 

(2) → (3) from (2) we have a cyclic subsequence ordered space such that  w, y ∈ {a, c} and x, z ∈ {b, 

d} which makes an 𝛼-separation any four points into two disjoint finite sets. Each one of them is being 

the complement of the other by definition (2.1). Hence, any one of these sets have the same number of 

𝛼-connected components by facts (2.6A). 

(3) → (4) X is 𝛼-𝑆1space, and A is a finite subset that has the same number of 𝛼-component with its 

complement. So there is an 𝛼-separation of X into two 𝛼-connected subsets by facts (2.6C). If A contains 

only one elemen, t then it is an 𝛼-open(𝛼-closed) connected which can not 𝛼-disconnect the other points 

in X. However, if it contains two elements, it is a jump. So, it is an edge-vertex incident pair by theorem 

(3.19). Therefore, the two points can not 𝛼-separate the two others points. Hence, they are non-incident 

to 𝛼-separate the others. 

(4) → (1) we have X is 𝛼-𝑆1space, for every four points on X, any two points which non-incident are 𝛼-

disconnect the other two, so they are 𝛼-disconnected. Since X is 𝛼-𝑆1 and 𝛼-connected, then there has 

not any point that 𝛼-disconnect the other three points in X. 

 

Definition 4.12: An 𝛼-connected topological space X is said to be an 𝛼-precycle, if |X| = 2, and X is 

an 𝛼-topolgized graph contains one vertex and one edge (a loop) only. Otherwise, If |X| ≥ 4, and X 

satisfies the statements of theorem (4.11). 

 

Definition 4.13: An 𝛼-precycle is called an 𝛼-cycle if it is locally 𝛼-connected. 

 The following simple example shows the idea of precycles and cycles by using the above definitions. 

 

Example 4.14: Let 𝑋 =  𝑉𝐺 ∪  𝐸𝐺 = {𝑣, 𝑒} be a set consists of one vertex and one edge (loop), with 𝜏𝑋 =
{∅, 𝑋, {𝑣}}, then (𝑋, 𝜏) is a topological space such that the elements of  𝜏 are open sets and their 

complements are closed sets. So the 𝛼-topology of X is 𝜏𝛼𝑋 = {∅, 𝑋, {v}} which contains an α-open sets 

and their complements are α-closed set. We can see that X is an α-connected space, therefore it is an α-

precycle by definition (4.12). Moreover, it is an α-cycle since it is locally α-connected by definition 

(4.13). 

5. Conclusion 

 Through this paper, alpha-prepaths, alpha-paths, and alpha-cycles have been formulated and some 

relationships have been discussed. Moreover, several theorems and corollaries have been proved to 

continuum the future searches and works to define a new concepts which are related with them like 

cycle spaces. 
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