The encoding of long low density parity check (LDPC) codes presents a challenge compared to its decoding. The Quasi Cyclic (QC) LDPC codes offer the advantage for reducing the complexity for both encoding and decoding due to its QC structure. Most QC-LDPC codes have rank deficient parity matrix and this introduces extra complexity over the codes with full rank parity matrix. In this paper an encoding scheme of QC-LDPC codes is presented that is suitable for codes with full rank parity matrix and rank deficient parity matrx. The extra effort required by the codes with rank deficient parity matrix over the codes of full rank parity matrix is investigated.
In this paper, we define the bg**-connected space and study the relation between this space and other kinds of connected spaces .Also we study some types of continuous functions and study the relation among (connected space, b-connected space, bg-connected space and bg**-connected space) under these types of continuous functions.
Fibrewise topological spaces theory is a relatively new branch of mathematics, less than three decades old, arisen from algebraic topology. It is a highly useful tool and played a pivotal role in homotopy theory. Fibrewise topological spaces theory has a broad range of applications in many sorts of mathematical study such as Lie groups, differential geometry and dynamical systems theory. Moreover, one of the main objects, which is considered in fibrewise topological spaces theory is connectedness. In this regard, we of the present study introduce the concept of connected fibrewise topological spaces and study their main results.
In this paper, the concept of semi-?-open set will be used to define a new kind of strongly connectedness on a topological subspace namely "semi-?-connectedness". Moreover, we prove that semi-?-connectedness property is a topological property and give an example to show that semi-?-connectedness property is not a hereditary property. Also, we prove thate semi-?-irresolute image of a semi-?-connected space is a semi-?-connected space.
In this paper, we introduced module that satisfying strongly -condition modules and strongly -type modules as generalizations of t-extending. A module is said strongly -condition if for every submodule of has a complement which is fully invariant direct summand. A module is said to be strongly -type modules if every t-closed submodule has a complement which is a fully invariant direct summand. Many characterizations for modules with strongly -condition for strongly -type module are given. Also many connections between these types of module and some related types of modules are investigated.
In this paper, we present a concept of nC- symmetric operator as follows: Let A be a bounded linear operator on separable complex Hilbert space , the operator A is said to be nC-symmetric if there exists a positive number n (n such that CAn = A*ⁿ C (An = C A*ⁿ C). We provide an example and study the basic properties of this class of operators. Finally, we attempt to describe the relation between nC-symmetric operator and some other operators such as Fredholm and self-adjoint operators.
Let be a Banach space, be a nonempty closed convex subset of , and be self
nonexpansive map. The sequence generated by the iterative method
, where be a contractive mapping
and is a sequence in We generalize the mapping to non-sel -Strongly
Pseudocontractive .
In this paper, we define the concept of soft -connected sets and soft -connected spaces by using the notion of soft -open sets in soft topological spaces. Several properties of these concepts are investigated.