The main goal of this paper is to make link between the subjects of projective
geometry, vector space and linear codes. The properties of codes and some examples
are shown. Furthermore, we will give some information about the geometrical
structure of the arcs. All these arcs are give rise to an error-correcting code that
corrects the maximum possible number of errors for its length.
MDS code is a linear code that achieves equality in the Singleton bound, and projective MDS (PG-MDS) is MDS code with independents property of any two columns of its generator matrix. In this paper, elementary methods for modifying a PG-MDS code of dimensions 2, 3, as extending and lengthening, in order to find new incomplete PG-MDS codes have been used over . Also, two complete PG-MDS codes over of length and 28 have been found.
In this paper, we propose new types of non-convex functions called strongly --vex functions and semi strongly --vex functions. We study some properties of these proposed functions. As an application of these functions in optimization problems, we discuss some optimality properties of the generalized nonlinear optimization problem for which we use, as an objective function, strongly --vex function and semi strongly --vex function.
This work presents a comparison between the Convolutional Encoding CE, Parallel Turbo code and Low density Parity Check (LDPC) coding schemes with a MultiUser Single Output MUSO Multi-Carrier Code Division Multiple Access (MC-CDMA) system over multipath fading channels. The decoding technique used in the simulation was iterative decoding since it gives maximum efficiency at higher iterations. Modulation schemes used is Quadrature Amplitude Modulation QAM. An 8 pilot carrier were
used to compensate channel effect with Least Square Estimation method. The channel model used is Long Term Evolution (LTE) channel with Technical Specification TS 25.101v2.10 and 5 MHz bandwidth bandwidth including the channels of indoor to outdoor/ pedestrian
A submodule N of a module M is said to be s-essential if it has nonzero intersection with any nonzero small submodule in M. In this article, we introduce and study a class of modules in which all its nonzero endomorphisms have non-s-essential kernels, named, strongly -nonsigular. We investigate some properties of strongly -nonsigular modules. Direct summand, direct sums and some connections of such modules are discussed.
Let R be a commutative ring with unity. Let W be an R-module, for K≤F, where F is a submodule of W and K is said to be R-annihilator coessential submodule of F in W (briefly R-a-coessential) if (denoted by K F in W). An R-module W is called strongly hollow -R-annihilator -lifting module (briefly, strongly hollow-R-a-lifting), if for every submodule F of W with hollow, there exists a fully invariant direct summand K of W such that K F in W. An R - module W is called strongly R - annihilator - ( hollow - lifting ) module ( briefly strongly R - a - ( hollow - lifting ) module ), if for every submodule F of W with R - a - hollow, there exists a fully invariant direct summand K o
... Show MoreIn this essay, we utilize m - space to specify mX-N-connected, mX-N-hyper connected and mX-N-locally connected spaces and some functions by exploiting the intelligible mX-N-open set. Some instances and outcomes have been granted to boost our tasks.
With simple and undirected connected graph Φ, the Schultz and modified Schultz polynomials are defined as and , respectively, where the summation is taken over all unordered pairs of distinct vertices in V(Φ), where V(Φ) is the vertex set of Φ, degu is the degree of vertex u and d(v,u) is the ordinary distance between v and u, u≠v. In this study, the Shultz distance, modified Schultz distance, the polynomial, index, and average for both have been generalized, and this generalization has been applied to some special graphs.
Suppose that