The aim of this article is to introduce a new definition of domination number in graphs called hn-domination number denoted by . This paper presents some properties which show the concepts of connected and independent hn-domination. Furthermore, some bounds of these parameters are determined, specifically, the impact on hn-domination parameter is studied thoroughly in this paper when a graph is modified by deleting or adding a vertex or deleting an edge.
A new type of the connected domination parameters called tadpole domination number of a graph is introduced. Tadpole domination number for some standard graphs is determined, and some bounds for this number are obtained. Additionally, a new graph, finite, simple, undirected and connected, is introduced named weaver graph. Tadpole domination is calculated for this graph with other families of graphs.
In this work, the study of corona domination in graphs is carried over which was initially proposed by G. Mahadevan et al. Let be a simple graph. A dominating set S of a graph is said to be a corona-dominating set if every vertex in is either a pendant vertex or a support vertex. The minimum cardinality among all corona-dominating sets is called the corona-domination number and is denoted by (i.e) . In this work, the exact value of the corona domination number for some specific types of graphs are given. Also, some results on the corona domination number for some classes of graphs are obtained and the method used in this paper is a well-known number theory concept with some modification this method can also be applied to obt
... Show MoreLet be a non-trivial simple graph. A dominating set in a graph is a set of vertices such that every vertex not in the set is adjacent to at least one vertex in the set. A subset is a minimum neighborhood dominating set if is a dominating set and if for every holds. The minimum cardinality of the minimum neighborhood dominating set of a graph is called as minimum neighborhood dominating number and it is denoted by . A minimum neighborhood dominating set is a dominating set where the intersection of the neighborhoods of all vertices in the set is as small as possible, (i.e., ). The minimum neighborhood dominating number, denoted by , is the minimum cardinality of a minimum neighborhood dominating set. In other words, it is the
... Show MoreGraph is a tool that can be used to simplify and solve network problems. Domination is a typical network problem that graph theory is well suited for. A subset of nodes in any network is called dominating if every node is contained in this subset, or is connected to a node in it via an edge. Because of the importance of domination in different areas, variant types of domination have been introduced according to the purpose they are used for. In this paper, two domination parameters the first is the restrained and the second is secure domination have been chosn. The secure domination, and some types of restrained domination in one type of trees is called complete ary tree are determined.
This research is the subject of "Domination and Motivation in the Sculptures of Mona the Saudi" to the study of an accomplished Arab sculptor with its varied sculptural activity between the works of the exhibition and the works of the squares, as well as its distinguished place among the contemporary Arab sculptors. This research is divided into four chapters:
The first chapter deals with the general methodological framework of the research in terms of the research problem which is focused on the question: What is the hegemony and motivation in the sculptures of Mona Saudi? The importance of research and the need for it, including the technical scientific material concerned with the sculptural achievement of t
... Show MoreAn edge dominating set of a graph is said to be an odd (even) sum degree edge dominating set (osded (esded) - set) of G if the sum of the degree of all edges in X is an odd (even) number. The odd (even) sum degree edge domination number is the minimum cardinality taken over all odd (even) sum degree edge dominating sets of G and is defined as zero if no such odd (even) sum degree edge dominating set exists in G. In this paper, the odd (even) sum degree domination concept is extended on the co-dominating set E-T of a graph G, where T is an edge dominating set of G. The corresponding parameters co-odd (even) sum degree edge dominating set, co-odd (even) sum degree edge domination number and co-odd (even) sum degree edge domin
... Show MoreMy research tagged [the lights of the statement in the first part of the Koran] came to show that the dear book was developed according to a precise linguistic system is not increased by a word or letter or movement - Aldmh and Kira and the hole - and does not lack anything of it except with the wisdom required by the meanings of the Koranic text or Sura generally . The Koran does not come falsehood from his hands or from behind it is infallible and preserved; because it was revealed by the sage Hamid Hamid ﭽﮗ ﮘ ﮙ ﮚ ﮛ ﮜ ﮝ ﮞ ﭼ [stone]. The Qur'an is safe from any verbal or moral dominance and dominates all the heavenly books and exists at any time and place that speaks the truth ﭽ ﯛ ﯜ ﯝ ﯞ ﯟ ﯹ ﯺﭼ [The
... Show MoreThis paper is devoted to the discussion the relationships of connectedness between some types of graphs (resp. digraph) and Gm-closure spaces by using graph closure operators.
Consider the (p,q) simple connected graph . The sum absolute values of the spectrum of quotient matrix of a graph make up the graph's quotient energy. The objective of this study is to examine the quotient energy of identity graphs and zero-divisor graphs of commutative rings using group theory, graph theory, and applications. In this study, the identity graphs derived from the group and a few classes of zero-divisor graphs of the commutative ring R are examined.
The chemical properties of chemical compounds and their molecular structures are intimately connected. Topological indices are numerical values associated with chemical molecular graphs that help in understanding the physicochemical properties, chemical reactivity and biological activity of a chemical compound. This study obtains some topological properties of second and third dominating David derived (DDD) networks and computes several K Banhatti polynomial of second and third type of DDD.