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ABSTRACT

This paper is devoted to the discussion the relationships of connestedness between some types of graphs (resp,. digraph)
and Gm-closure spaces by using graph closure operators.

1. Introduction And Preliminaries

Graphs are some of the most important structures in discrete mathematics. Their ubiquity can be
attributed to two observations. First, from 2 theoretical perspective, graphs are mathematically
elegant. Even though a graph is a simple structure, consisting only of & set of vertices and a
relation between pairs of vertices, graph theory is a rich and varied subject. This is partly due the
fact that, in addition to being relational structures, graphs can also be seen as topological spaces,
combinatorial objects, and many other mathematical structures. This leads to the second
observation regarding the importance of graphs: many concepts can be abstractly represented by
graphs, making them very useful froma practical viewpoint.

One of the most basic and important building blocks of graph theory is the notion of
“connectedness”, The same word also has a very important meaning in the field of general topology:.
indeed, arguably the latter subject grew precisely out of the efforts of several mathematicians to
give the right formalization for concepts like “continuity”, “convergence”, “dimension™ and, not
least, connectedness. Although formally the two concepts are very different, one depending on
finite paths and the other on open sets, the intuition behind the two versions of connectedness is
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essentially the same, and few will dispute that any link between graph theory and topology should
at |east reconcile them, if not be entirely dictated by this objective. In fact the usual way of modeling
a graph as a topological object does achieve this, albeit in a way which, we feel, is not entirely
satisfactory.

The notation we use for the graph theoretical aspects of this paper generally follow R. J. Wilson,
W. D. Wallis, J. Bondy and D. S, Murty, K Diestel, and D, Nogly and M. Schladt [1,2.4,5, 7). A
graph (resp., directed graph or digraph) G=(¥(G), E(G)) consists of a vertex set /() and an edge
set £(G) of unordered (resp, ordered) pairs of elements of MG). To avoid ambiguities, we assume
that the vertex and edge sets are disjoint. We say that two vertices v and w of & graph (resp.,
digraph) G are adjacent if there is an edge of the form vw (rsep., vw or wv) joining them, and the
vertices v and w are then incident with such an edge. A subgraph of & graph G is a graph, each of

of edges incident with v, and written deg(v). A vertex of degree zero is an isolated vertex. In
digraph, the out-D*(v), similarly, the in-degree of a vertex v of G is the number of edges of the
form wv, and denoted by D*(v). A graph is connected if it cannot be expressed as the union of two
graphs, and disconnected otherwise. Clearly any disconnected graph G can be expressed as the
union of connected graphs, each of which is a component of G. A graph whose edge-set is empty
is & null graph, we denote the null graph on  vertices by V,. A graph in which each pair of distinct
vertices are adjacent is a complete graph, we dente complete graph on » vertices by X,,. A connected
graph that is all vertices of degree 2 isa cycle; we denote the cycle graph on n vertices by C,. The
graph obtained from C,, by removing an edge is path graph on n vertices, and dented by P,. The
graph obtained from C,, | by Joining each vertex to a new vertex v is the wheel on n vertices, and
denoted by W, Ifthe vertax setofa graph G can be spite two disjoint sets Yand ¥ (resp., r~disjoint
sets) so that each edge of G joins a vertex of X'and a vertex of ¥ (resp., each edge of G has ends in
different r-disjoint sets) is bipartite (resp., r-partite). A complete bipartite (resp., r-partite) graph
is a bipartite (resp., r-partite) in which each vertex in X is joined to each vertex in ¥ (resp., each
vertex in any set joined to each vertex in the other set), we denote the bipartite graph with s
vertices of X'and t vertices of Yby X, A forest is a graph that contains no cycle, and a connectad
forest is a tree, we denote the tree graph with n vertices by 7,,. A topological space is disconnected
(3. 6] if and only if it can be written as & union of two disjoint nonempty open (resp., closed)
subsets, otherwise is connected. For a set X, 1X] denotes the cardinal number of X,

2. Connectedness In Undirected Graphs

In this section, we introduce the graph closure operators, and we study the concepts of
connectedness in some types of graphs and obtained Gp-closure spaces from these granhs by
using graph closure operators.

We introduce the definition of graph closure operators in graphs as follows:

Definition 2.1

Let G=(MQ), E(G)) be a graph, P(V{(G)) its power set of all subgraphs of G and Clg:P(V(Q) -
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P{WV(G)) is a mapping associating with each subgraph H = (V(H), E(H)) a subgraph Cl;V(H)) €
(G) called the closure subgraph of A such that:

Cl{V(H)) = V(H) v {v € G)\VH); hv e E(G) forall h & ¥(H))
The operation Clg; is called graph closure operator and the pair (¥(G), Cg) is called G-closure
space, and Cg((G)) is the family of elements of Clg;. The dual of the graph closure operator Clg;
is the graph interior operator Intg:P(V(G)) — P(V(G)) defined by Intg(V(H)) =
WG)\CI{¥(G)\V(H)) for all subgraph H ¢ G. A family of elements of Ints is called interior
subgraph of / and denoted by O;(¥(G)). Clear that (V(G), Og) is a topological space.
A subgraph + of G-closure space (V(G), C;) is called closed subgraph if Clg(V(H)) = V(H). Itis
cailed open subgraph if its complement is closed subgraph, i.e. CIc(M(GN(H)) = KG\(H), or
equivalently Intg{(¥V(#)) = V(H).
Example 2.1
Let G = (KG), E(C)) be a graph such that:

V(G) = {a, b, ¢, d}, E(G) = {ab, ac, be}

a .d
b c
V(H) Cl{V(H) V(H) Cl{V(H)
G) G) {a, d} G
@ © {5, c} {a, b, ¢}
{a) {a. b, ¢} (b, d} nG)
{6} {a, b, c} {c, d} nG)
{c} {a, b, ¢} {a, b, c) {a, b, c}
{d} {d} {a, b, d} 4(%)
{a, b} {a. b, c} {a,c, d) G)
{a, ¢} {a, b, c) {b, ¢, d} 4(%))

Co(H(@) = {VQ), @ {d}, {a, b, c}}
It is clear that the graph G is disconnected and G-closure spaces (¥(G), Cg) on a graph G is
disconnected.
Proposition 2.1
[fin a graph G = (V(G), E(G)); |(G)}> | has at least one isolated vertex, then the G-closure spaces
(K@), Cg) on a graph G is disconnected.
Proof:
Let G = (M(G), E(G)) be a graph which has an isolated vertex x. Then x & Cig(V(H)) for all
H(V) = G(V)\(x} and Cl{{x}) = {x} which is clopen subgraph. Therefore {x} and N(G)\{x} are
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nonempty disjoint open subgrapgs and {x} \ (M(G)\{x}) = “(G). Hence the G-closure space on G

is disconnected,
Corollary 2.1

If in a graph G = (X(G), E(G)) has a vertex of degree zero (deg(v) = 0), then the G-closure space
(M(G), Cg) on a graph G is disconnected.

Example 2.2

Let G = (MG), E(G) ) be a graph such that:
V(G)g {0. b- c, J}v E(G)" {abv Cd}

a o~ e b
c O -9 d
V(H) Cl{V(H) V(H) ClAV{H)

G) HG) {a, d} G)
@ @ {6, c} G)
{a} (a, b} b, d) Q)
{&) {a, b} {c. d} {c. d)
{c} {c. d} {a, b, c} MG)
{4} {c, d] {a, b, d) G)
{a. b} {a. b} {a,c d] G)
{a, ¢} 4(9))] {b.c. d) 4(%)

Co(Q)) = {MG), o {8, b}, {c, d}}
It is clear that the graph G is disconnected and G-closure spaces (M(G), Cg) on a graph G is
disconnected.

Proposition 2.2
In a graph G = (K(G), E(Q)); [(G)| = n > 3, if the degree of all vertices of G is one. then the G-
closure spaces (F{G), Cg) on & graph G is disconnected,

Proof:

Let G = (M(G), E(G)) be a graph and deg(v) = | for all v € V(G). Forall v; € ¥(G) there exists a
unique v, € M(G) such that Clg({v}) = {v; v (It is clear that Clc({v;}) = {v, v;}). Clear that

|(G)| is even, 50 TGN vy v} = Clel{y, V3y oo Vet )i Vi £ =1,2,..., 2 ~ T 2re no mutually adjacent.

i.e., V(G)\{v,.v j} = U:' Clg;({v}) - Therefore {v, v;) and W(G)\{v, v;} are nonempty disjoint
clopen subgraph and {v,, v} U (M(G)\ (v, v}) = H(G). Hence the G-closure spaces (V(G), Cg) on
G is disconnected. :
Remark 2.1

The condition of V(@) = n> 3 in above proposition is necessary for example.

Example 2.3

Let G = (M(G), E(G)) be a graph such that [F(G)| = 2, then the G-closure spaces (K(G), Cg)on G
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is indiscrete space which is connected.

We obtain & new definition to construct topological closure spaces from G-closure spaces by
redefine graph closure operater on the resultant subgraphs as a domain of the graph: closure operator
and stop when the operator transfers each subgraph to itself.

Definition 2.2

Let G = (V(G), E(G)) be & graph and Clg,-P(V(G)) = P(V(C)) an operator such that:

(a) Itis called Gm-closure operator if Clon(VIH)) = Cl(Clg( ... Cl(VF)). m-times, for every
subgraph H < G.

(b) itis called G,-topological closure operator if Clg. (V(H)) = Clgu( V(H)) for all subgraph
He G

The spaces (V(G), Cgy) is called Gm-closure space.

Example 2.4

Let G = {K(G), E(G)) be a graph such that:

V(G) = {a, b, c}, E(G) = (ab, ac)

a
b c

V(H) Cl(V(H) Clg(V(H)

(G) MG) G)
@ @ @

{a) 4(%3) G)

{6} {a, b} G)

{c} {a, c} G
{a, b WG) G)
{a.¢ NG) nG)
{5, c} &) &)

Cod (GY) = {HC). ¢}
it is clear that a completely bipartite graph G is connected and the G,-closure space (M(G), Cga)
on a graph G is connected.

Propaosition 2.3

if 2 graph G = (V(G), E(G)) is completely bipartite K, , then the Gm-closure space (H(G), Cap) ON
agraph G is connected.

Proof:

Let G = (WMG), E(G)) be a completely bipartite K, graph, then there exists two subsets of a vertex
set ¥(G), say X and ¥ and LG =5, |¥] = ¢ such that XL Y= WG)and X n Y = p. Without lose of




i M.SHOKRY & Y. Y, YOUSIF

generality, suppose s < £ For x € X, we have Clg({x}) = {x} v ¥ and the structure is not
G-topological closure space since ifx, # x, € X, Clg({x}) = {x;} w Yand Clg({x;}) = {xa} © ¥
but Clg({x}) N Clg{{x;}) = ¥ which is not in this structure. Continuous in this process, we
have Clg,. (x5, %2 ... X, 9 ¥) = ¥(G), and the obtained space is indiscrete which is connected.

Corollary 2.2

If a graph G = (M(G), E(G)) is completely r-partite; r 22, then the G,-closure space (K{G), Cg) on
a graph G is connected.

Remark 2.2
The condition of completely in above proposition is necessary for example,
Example 2.5
Let G = (V(G), E(G)) be a graph such that:
WG) = {a, b, c}, E(G) = {ab}
a oy -
b
H{H) CLAVTH)
HG) (%))
@ @
{a) {a, b}
{6} {a, b}
{c} ' el
la. b) ta, b}
la, ¢} G)
{6, ¢} ()

ClH(Q) = {H(G), @, (¢}, {a, b))
It is clear that the graph G is bipartite not complete but the G ,-closure spaces (V{G), Cg) on a
graph G is disconnectéd,
Proposition 2.4
If a graph G = (V(G), £(G)) has n components: n 2 2, without isolated points, then the G,,-closure
space (V{G), Cg,,) on a graph G is disconnected.
Proof: '
Let G = (¥(G), E(G)) be a graph and has n components, (G;), K(Gy), ..., (G). such that M(Q) =
WG,) v WG,) v ... U ¥(G,), and the number of vertices in every components < k then
Clog (NG = V(G)) forall i = 1,2, ..., n. Henee Cgyp = {UG), . V(G M(Ga)y v (G
which is disconnected.
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Proposition 2.5

Ifa graph G = (M(G), E(Q)) is completely K, (cycle C,, tree T, and wheel W), then the G, -closure
space (V(G), Cg,) ona graph G is connected.

Proof:

Since the Gm-closure space (V(G), Cg,,) on completely K, (cycle C,, tree T,, and wheel W)
graph is indiscrete space, the proof holds.

Theorem 2.1
If G = (M(G), E(G)) is a graph, and (KG), Cpg) 18 G,~closure space on G. For every subgrapg H
¢ G, then

i ni-15 (V) piGN=n22
Proof:
By indication
When 2 = 2, then [Clg (V(H)| - 1 =2-1 =1

v (G)l) 2\,

. Al‘ld( By if (2) |
the statement is true,
Suppose the statement is true when n = &, So

1< )-{})-

To prove the statement is true when n =k + L.
The maximum number of vertices that may adjacent with x is &, so

(Clesu (VD=1 S k sf(_".z‘_')g(k;l)=(|;'(20)l)

Hence the statement is true.
Corollary 2.3

If G = (KG), E(G)) is a graph, and (M(G), Cg,) is G,,~closure space on G. For every subgrapg
H < G, then

ZratlClimW(HN =< ,,(IV(ZG)I} WG\ =n22

3. Connectedness In Directed Graphs

In this section, we study the graph closure operators in directed graph and investigate the
relationships of connectedness between some types of graphs and obtained G, ~closure spaces
from these graphs by using graph closure operators,

We introduce the definition of graph closure operators in digraphs as follows:
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Definition 3.1
Let G = (V(G), £(G)) be a digraph, P((G)) its power set of all subgraph of G and Clg,,:P(V(G))
—» P(V(G)) is graph closure operator such that:
Clon(V(H)) = V(H)U (v €(G)\V(H); v € E(G)} for all h eV (H)}
Where H = (V(H), E(H)) be a subgraph of G, and the pair (N(G), Cg,,) is called G,,-closure space,
Example 3.1 : '
Let G = (WK(G), E(G) ) be a digraph such that: (G) = (a, b, ¢, d}, E(G) = {(a. b), (5, ¢)}
Ca(N(@) = (NG), @ {c}, {d}, (b, c}, {c. d), {a, b, ¢}, {b.c, d}}

1 .d

b
V(H) CldV(H)) | Clg(V(H) W(H) ClgVH)) | Clp(V(H)) |
4(%) 4(%)) G) {a, d} {a b, d} KG)

@ ® @ (&, c} {5, c} {5, c}
{a} {a, b} {ab, c) {5, d} {6, ¢, d} {6, ¢, d}
{5) {b, ¢} {5, c} {c. d} {c,d) {c. d}
{c} {c} {c} {a b, ¢} ‘a, b.c a,be¢c
{d) {d} {d) {a b, d} nG) Gy

{a, b} abc} [ab,c) Mac, d) G) HG)
{a, c} ab, c} {ab, c} {6, ¢, d) {b, c, d} {6, ¢, d}

It is clear that the digraph G is disconnected and the G,-closure space (V(G), Cy) ona graph G is
disconnected.

Proposition 3.1

If in a digraph G = (V(C), E(G)); |(G)| > | has at least one isolated vertex, then the G, ~closure
spaces (M(G), Cg,,) ona graph G is disconnected. '

Proof:

Similarly of proof proposition (2.1)

Corollary 3.1

If in a digraph G = (V(G), E(G)); [/{G)| > | has at least one vertex v € W(G) such that D*(v) = D~
(v) = 0, then the G, -closure spaces (V(G), Cg,,) on & graph G is disconnected.

Remark 3.1

The corollary (2.1) is not satisfied in digraph. For example:

Example 3.2

Let G = (X(G), E(G)) be a digraph such that:
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WG)={a, b.c, 4, ¢},
E(G) = {(a, b), (a, d), (¢, b), (d, ¢), (d, &), (¢, a)}

<€

a d
b B c
V(H) Clg(V(H)) | Cin(V(H)) V(H) Clm(VH) | Cl(V(H)

[4(%)] G) 4(%)) {d, e} {a, ¢ d e} G)
@ @ ) {a, b, ¢} {a, b, ¢, d} G)
{a} {a, b, d} G) {a b, d} G 4(%))
{b} {6} (6} (g, b, ¢} la b d e} G)
{c} {5, c} {5, ¢} a, ¢ d} 4(9) NG)
{d} {c, d, ¢} G) a, ¢ e} 4(9) 4(9)
{e} {g, e} {a, b, d e} {a.d e} G) HG)
{a, b} {a, b, d} nG) {b.c. d} {b.c, d e} [4(%)]
{a,c] {ab, c d} 1G) {b, c, e} {a, b, ¢ ¢} G
{a, d} 4(%)) nG) {b, d, e} [4(%)) G)
{a, e} {a, b, d e} G) {c. d e} 4(%)) G)
{6, ¢ {6, ¢} {b, c} {a, b, c, d} HG) G)
{6, d] {b, c, d, e} G) {a, b c e} 4(9) MG)
{b, e} {a, b, e} {a,bd e} | {ab.d e} NG) G)
{c,d} | {bcde) G) {a,c.d, ¢) G) G)
fc. e} abgee NG {b.c d e} NG) WG)

CG:(V(G” = [(V(G)a 1) {b}’ {b, C}, {a' bn dt ¢}}

It is clear that the digraph G has a vertex b of out-degree zero but the G,-closure spaces (V(G),
" Cgy) on & graph G is connected, )

Example 3.3

Let C=(V(G), E(C)) be a digraph suche that:
Q) = {a, b, ¢}, E(G) = {(a, b), (a, ¢), (b, c)}

85




26 M. SHOKRY & Y. Y. YOUSIF

V(H) Gl (V(H) Clho(HH))
(%) MG NG)
") @ w
ta) o, by 1G)
[ 1h. ¢} HG)
3 {o. ¢} G
lu, b} HG) 1G)
la. o} HG) G)
{6, ¢} K(G) naG)

Cal KG)) = {HG), ¢)
It is clear that in a digraph G all vertices has out-degree one and the G, -closure space
(F(G). Cin) on a graph G is connected.
Proposition 3.2
In a digraph G = (V(C), E(G)), if the out-degree of all vertices of G is one, then the G, -closure
space (¥(G), C;,,) on a digraph G is connected.
Proofl: i
Let G= (H(G), E(C)) be a digraph and D"(v) = | for all v € (7). Then for every v; & H(G) there
eXists a unique v, € WV(G) such that CY( {v;}) = (v, V1. So there exists a unique v, € 1{G) such that
ClAtv Nl = () & CAIG)). Hence Cy,,. (11G)) is indiscrete space on U where n is
the number of vertices of G. Which is connected.
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