The aim of this paper is to generate topological structure on the power set of vertices of digraphs using new definition which is Gm-closure operator on out-linked of digraphs. Properties of this topological structure are studied and several examples are given. Also we give some new generalizations of some definitions in digraphs to the some known definitions in topology which are Ropen subgraph, α-open subgraph, pre-open subgraph, and β-open subgraph. Furthermore, we define and study the accuracy of these new generalizations on subgraps and paths.
This paper is devoted to the discussion the relationships of connectedness between some types of graphs (resp. digraph) and Gm-closure spaces by using graph closure operators.
Many codiskcyclic operators on infinite-dimensional separable Hilbert space do not satisfy the criterion of codiskcyclic operators. In this paper, a kind of codiskcyclic operators satisfying the criterion has been characterized, the equivalence between them has been discussed and the class of codiskcyclic operators satisfying their direct summand is codiskcyclic. Finally, this kind of operators is used to prove that every codiskcyclic operator satisfies the criterion if the general kernel is dense in the space.
The result involution graph of a finite group , denoted by is an undirected simple graph whose vertex set is the whole group and two distinct vertices are adjacent if their product is an involution element. In this paper, result involution graphs for all Mathieu groups and connectivity in the graph are studied. The diameter, radius and girth of this graph are also studied. Furthermore, several other graph properties are obtained.
In this paper, the Normality set will be investigated. Then, the study highlights some concepts properties and important results. In addition, it will prove that every operator with normality set has non trivial invariant subspace of .
Graceful labeling of a graph with q edges is assigned the labels for its vertices by some integers from the set such that no two vertices received the same label, where each edge is assigned the absolute value of the difference between the labels of its end vertices and the resulting edge labeling running from 1 to inclusive. An edge labeling of a graph G is called vertex anntimagic, if all vertex weights are pairwise distinct, where the vertex weight of a vertex under an edge labeling is the sum of the label of all edges incident with that vertex. In this paper, we address the problem of finding graceful antimagic labelin for split of the star graph , graph, graph, jellyfish graph , Dragon graph , ki
... Show MoreIn this paper, we introduce the bi-normality set, denoted by , which is an extension of the normality set, denoted by for any operators in the Banach algebra . Furthermore, we show some interesting properties and remarkable results. Finally, we prove that it is not invariant via some transpose linear operators.
In this paper, we introduce a class of operators on a Hilbert space namely quasi-posinormal operators that contain properly the classes of normal operator, hyponormal operators, M–hyponormal operators, dominant operators and posinormal operators . We study some basic properties of these operators .Also we are looking at the relationship between invertibility operator and quasi-posinormal operator .
This paper is concerned with introducing and studying the first new approximation operators using mixed degree system and second new approximation operators using mixed degree system which are the core concept in this paper. In addition, the approximations of graphs using the operators first lower and first upper are accurate then the approximations obtained by using the operators second lower and second upper sincefirst accuracy less then second accuracy. For this reason, we study in detail the properties of second lower and second upper in this paper. Furthermore, we summarize the results for the properties of approximation operators second lower and second upper when the graph G is arbitrary, serial 1, serial 2, reflexive, symmetric, tra
... Show MoreThe new type of paranormal operators that have been defined in this study on the Hilbert space, is paranormal operators. In this paper we introduce and discuss some properties of this concept such as: the sum and product of two paranormal, the power of paranormal. Further, the relationships between the paranormal operators and other kinds of paranormal operators have been studied.