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ABSTRACT 

This paper is concerned with introducing and studying the first new 

approximation operators using mixed degree system and second new 

approximation operators using mixed degree system which are the core 

concept in this paper. In addition, the approximations of graphs using the 

operators first lower and first upper are accurate then the approximations 

obtained by using the operators second lower and second upper sincefirst 

accuracy less then second accuracy. For this reason, we study in detail the 

properties of second lower and second upper in this paper. Furthermore, we 

summarize the results for the properties of approximation operators second 

lower and second upper when the graph G is arbitrary, serial 1, serial 2, 

reflexive, symmetric, transitive, tolerance, dominance and equivalence in 

table. 

Key words: Digraph, Out-degree set, In-degree set, Mixed degree set, first 

approximation operators, second approximation operators, first accuracy 

and second accuracy.  
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1.  INTRODUCTION AND PRELIMINARIES 

 The theory of rough sets. Proposed by Pawlak [8], is a good mathematical tool for data 

representation. Its methodology is concerned with the classification and analysis of missing attribute 

values, we introduce a new definitions of the lower and upper approximation operators using mixed 

degree systems, for example in structural analysis [21].We built on some of the results in [1], [3], [6], 

[7], [10], [11], [12], [13],[14], [15], [17], [18], [19] [20].  

 A directed graph or digraph [16] is pair G = (V(G), E(G)) where V(G) is a non-empty set 

(called vertex set) and E(G) of ordered pairs of elements of V(G) (called edge set). An edge of the 

from(v, v) is called a loop. If v∈V(G), the out-degree of v is |{u∈V(G) : (v, u)∈E(G)}| and in-degree of v 
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is |{u∈V(G) : (u, v)∈E(G)}|. A digraph is reflexive if (v, v)∈E(G) for each v∈V(G), symmetric if  (v, 

u)∈E(G) implies (u, v) ∈E(G), transitive if (v, u)∈E(G) and (u, w)∈E(G) implies (v, w)∈ E(G), tolerance if 

it is reflexive and symmetric, dominance if it is reflexive and transitive, equivalence if it is reflexive 

and symmetric and transitive, serial if for all v∈V(G) there exists u∈V(G) such that (v, u)∈E(G). A 

subgraph of a graph G is a graph each of whose vertices belong to V(G) and each of whose edges 

belong to E(G). An empty graph [2] if the vertices set and edge set is empty. The out-degree set of v 

is denoted by OD and defined by: OD = {u∈V(G) : (v, u) ∈ E(G)} and in-degree set of v is denoted by ID 

and defined by:ID = {u ∈ V(G) : (u, v) ∈ E(G)}.Let G = (V(G),E(G)) be a digraph, the digraph inverse Gˉ¹ 

[5] is specified by the same set of vertices V(G) and a set of edge E(G)ˉ¹ = {(u, v) : (v, u)∈ E(G)}. 

 

2.  New Approximation Operators Using Mixed Degree Systems  

 In the rough set theory, one starts with an equivalence relation. A universe is divided into a 

family of disjoint subsets. The granulation structure adopted is a partition of the universe. By 

weakening the equivalence relations, we can have more general granulation structures such as 

coverings of the universe. Out-degree (resp. In-degree) systems provide an even more general 

granulation structures. For each vertex v of graph G, one associate it with a nonempty family of out-

degree (resp. in-degree) granules, which is called an out-degree (resp. in-degree) system of v and is 

denoted by OD(v) (resp. ID(v)). From this point of view, rough set theory is a special form of out-

degree (resp. in-degree) system space theorem sees [4, 9 and 17]. 

 

2.1.  First New Approximation Operators Using Mixed Degree Systems. 

 The main objective of this section is to propose a set-theoretic framework for granular 

computing using mixed degree systems. Some types of degree system based on arbitrary are used. 

Consider the generalized approximation space G = (V(G), E(G)), we introduce a new definitions of the 

lower and upper approximation operators using mixed degree systems. The properties of the 

suggested operators are obtained. Also, we give new definitions of the accuracy of the introduced 

approximations. Furthermore, an interesting theorem is proved. The approximation are constructed 

using out, in and mixed degree systems. A comparison between these three approaches is 

superimposed.  

 

Definition 2.1.1. Let G = (V(G), E(G)) be a generalization approximation space and H⊆G. Then  

(a) the firstlower and upper approximations of H using out degree systems are denoted by   
 (V(H)) 

and   
 (V(H)) and defined by  

  
 (V(H)) = {v ∈V(H) ; OD(v) ⊆V(H)}, 

  
 (V(H)) = V(H) ⋃{v ∈V(G) ⎼V(H) ; OD(v) ⋂V(H)}, 

(b) the first lower and upper approximations of H using in degree systems are denoted by   
 (V(H)) 

and   
 (V(H)) and defined by  

  
 (V(H)) = {v ∈V(H) ; ID(v) ⊆V(H)}, 

  
 (V(H)) = V(H) ⋃{v ∈V(G) ⎼V(H) ; ID(v) ⋂V(H)}, 

(c) the first lower and upper approximations of H using mixed degree systems are denoted by 

  
 (V(H)) and   

 (V(H)) and defined by  

  
 (V(H)) = {v ∈V(H) ; for some MD(v) ⊆V(H)}, 

  
 (V(H)) = V(H) ⋃{v ∈V(G) ⎼V(H) ; for all MD(v) ⋂V(H)}. 

 

Definition 2.1.2. Let G = (V(G), E(G)) be a generalization approximation space and H⊆G. Then  
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(a) the first boundary, positive and negative regions of H using out degree systems are denoted by 

   
 (V(H)),     

 (V(H))  and     
 (V(H)) and defined by  

   
 (V(H))=   

 (V(H)) ⎼  
 (V(H)), 

    
 (V(H)) =   

 (V(H)), 

    
 (V(H)) = V(G) ⎼  

 (V(H)), 

(b) the first boundary, positive and negative regions of H using in degree systems are denoted by 

   
 (V(H)),     

 (V(H))  and     
 (V(H)) and defined by  

   
 (V(H)) =   

 (V(H)) ⎼  
 (V(H)), 

    
 (V(H)) =   

 (V(H)), 

    
 (V(H)) = V(G) ⎼  

 (V(H)), 

(c) the first boundary, positive and negative regions of H using mixed degree systems are denoted 

by    
 (V(H)),     

 (V(H))  and     
 (V(H)) and defined by  

   
 (V(H)) =   

 (V(H)) ⎼  
 (V(H)), 

    
 (V(H)) =   

 (V(H)), 

    
 (V(H)) = V(G) ⎼  

 (V(H)). 

 

Definition 2.1.3. Let G = (V(G), E(G)) be a generalization approximation space. The first accuracy of 

the approximations of a subgraphH⊆G using (out, in and mixed) degree systems are denoted by 

(  
  (V(H)),  

  (V(H)) and  
  (V(H))) and defined by  

  
  (V(H)) = 1 ⎼

    
        

      
, 

  
  (V(H)) = 1 ⎼

    
        

      
, 

  
  (V(H)) = 1 ⎼

    
        

      
. 

It is obvious that 0 ≤   
  (V(H))≤ 1, 0 ≤   

  (V(H))≤ 1 and 0 ≤   
  (V(H))≤ 1. Moreover, if                                             

  
  (V(H)) = 1 or   

  (V(H)) = 1or   
  (V(H)) = 1, then H is called H-definable (H-exact) graph. Otherwise, 

it is called H-rough. 

 

Example 2.1.4. Let G = (V(G), E(G)): V(G) = {v₁, v₂, v₃, v₄, v₅}, E(G) = {(v₁, v₂), (v₁, v₄), (v₂,v₂), (v₂, v₃), (v₂, 

v₄), (v₄, v₅), (v₄, v₃), (v₅, v₂), (v₅, v₅)}. 

 

 

 

 

 

 

Figure 2.1.1 : Graph G given in Example 2.1.4. 

We get 

OD(v₁) = {v₂, v₄}, OD(v₂) = {v₂, v₃, v₄}, OD(v₃) =  , OD(v₄) = {v₃, v₅}, OD(v₅) = {v₂, v₅}} 

Also we have 

ID(v₁) = {}, ID(v₂) = {v₁, v₂, v₅}, ID(v₃) = , ID(v₄) = {v₁, v₂}, ID(v₅) = {v₄, v₅} 

Then we obtain 

MDS(v₁) = {{v₂, v₄}, }, MDS(v₂) = {{v₂, v₃, v₄}, {v₁, v₂, v₅}}, MDS(v₃) = {, {v₂, v₄}}, MDS(v₄) = {{v₃, v₅}, {v₁, 

v₂}}, MDS(v₅) = {{v₂, v₅}, {v₄, v₅}}. 

Accordingly, we can obtain the following table 

v₂ 

v₅ 

v₃ 

v₄ v₁ 
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Table 2.1.1:   
  (V(H)),   

  (V(H)) and   
  (V(H)) for all H ⊆G. 

V(H)   
  (V(H))   

  (V(H))   
  (V(H)) 

{v₁} 4/5 3/5 1 

{v₂} 2/5 2/5 4/5 

{v₃} 3/5 4/5 1 

{v₄} 2/5 2/5 4/5 

{v₅} 3/5 3/5 4/5 

{v₁,v₂} 2/5 2/5 4/5 

{v₁,v₃} 2/5 2/5 3/5 

{v₁,v₄} 2/5 1/5 3/5 

{v₁,v₅} 2/5 2/5 3/5 

{v₂,v₃} 1/5 2/5 3/5 

{v₂,v₄} 1/5 1/5 2/5 

{v₂,v₅} 2/5 1/5 3/5 

{v₃, v₄} 2/5 2/5 4/5 

{v₃, v₅} 2/5 2/5 3/5 

{v₄, v₅} 1/5 2/5 3/5 

{v₁, v₂, v₃} 1/5 2/5 3/5 

{v₁,v₂, v₄} 2/5 2/5 3/5 

{v₁,v₂, v₅} 2/5 2/5 4/5 

{v₁,v₃, v₄} 2/5 1/5 3/5 

{v₁,v₃, v₅} 1/5 1/5 2/5 

{v₁,v₄, v₅} 1/5 2/5 3/5 

{v₂,v₃, v₄} 2/5 2/5 3/5 

{v₂,v₃, v₅} 2/5 1/5 3/5 

{v₂,v₄, v₅} 2/5 2/5 3/5 

{v₃, v₄, v₅} 2/5 2/5 4/5 

{v₁,v₂, v₃, v₄} 3/5 3/5 4/5 

{v₁,v₂, v₃, v₅} 2/5 2/5 4/5 

{v₁,v₂, v₄, v₅} 3/5 4/5 1 

{v₁,v₃, v₄, v₅} 2/5 2/5 4/5 

{v₂,v₃, v₄, v₅} 4/5 3/5 1 

V(G) 1 1 1 

 1 1 1 

 

Theorem 2.1.5. Let G = (V(G), E(G)) be a generalization approximation space and H⊆G. Then 

(a)   
 (V(H)) =   

 (V(H)) ⋃  
 (V(H)), 

(b)   
 (V(H)) =   

 (V(H)) ⋂  
 (V(H)), 

(c)    
 (V(H)) =    

 (V(H))⋂   
 (V(H)) and  

(d)   
  (V(H)) ≥ max{  

  (V(H)),  
  (V(H))}. 

Proof. 

(a) Let v∈(  
 (V(H)) ⋃  

 (V(H))) 

⇔v∈  
 (V(H)) ∨ v ∈  

 (V(H)) 

⇔OD(v)⊆V(H)∨ID(v)⊆V(H) 
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⇔∃MD(v) such that MD(v)⊆V(H) 

⇔v∈  
 (V(H)) 

Hence,   
 (V(H)) =   

 (V(H)) ⋃  
 (V(H)). 

(b) Let v∈  
 (V(H)), then there are two cases: 

(1) v∈V(H) ⟹v∈  
 (V(H)) ∧v∈  

 (V(H)) 

⟹ v ∈   
 (V(H)) ⋂  

 (V(H)). 

(2) v∈V(G) ⎼V(H). Then v∈  
 (V(H))  

⟹for all MD(v), MD(v) ⋂V(H) 

⟹(OD(v)⋂V(H) ) ∧ (ID(v)⋂ V(H) ) 

⟹v∈(  
 (V(H))) ∧v ∈ (  

 (V(H))) 

⟹v∈(  
 (V(H)) ⋂  

 (V(H))) 

Conversely, let v∈(  
 (V(H)) ⋂  

 (V(H))), 

Then there are two cases: 

(1) v∈V(H)⟹v∈  
 (V(H)) 

(2) v∈V(G)⎼V(H). Then v∈(  
 (V(H)) ⋂  

 (V(H))) 

⟹ (OD(v)⋂V(H) ) ∧ (ID(v)⋂ V(H) ) 

⟹for all MD(v), MD(v)⋂V(H) 

⟹ v∈  
 (V(H)) 

Consequently,   
 (V(H)) =   

 (V(H)) ⋂  
 (V(H)). 

The proof of (c) and (d) is similar to proof (c) and (d) in Theorem (2.17) in [21]. 

 Some properties of the first approximation operators   
 (V(H)) and   

 (V(H)) are imposed in 

the following properties.  

Proposition 2.1.6.Let G = (V(G), E(G)) be a generalization approximation space and H, K⊆G.  

(L1)   
 (V(H)) ⊆V(H), 

(L2)   
 (V(G)) = V(G), 

(L3)   
 ()= , 

(L4) If V(H)⊆V(K), then   
 (V(H)) ⊆  

 (V(K)), 

(L5)   
 (V(H) ⋂V(K))⊆  

 (V(H)) ⋂   
 (V(K)), 

(L6)   
 (V(H) ⋃V(K)) ⊇  

 (V(H)) ⋃  
 (V(K)), 

(L7)   
 (V(H)) = V(G)⎼ [  

 (V(G) ⎼V(H))], 

(U1) V(H)⊆  
 (V(H)), 

(U2)   
 (V(G)) = V(G), 

(U3)   
 ()= , 

(U4) If V(H)⊆V(K), then   
 (V(H)) ⊆  

 (V(K)), 

(U5)   
 (V(H) ⋂V(K)) ⊆  

 (V(H)) ⋂   
 (V(K)), 

(U6)   
 (V(H) ⋃V(K)) ⊇  

 (V(H)) ⋃  
 (V(K)), 

(U7)   
 (V(H)) = V(G)⎼ [  

 (V(G) ⎼V(H))] and 

(LU)   
 (V(H)) ⊆  

 (V(H)). 

Proof. 

The proof (L1), (L2) and (L3) by Definition(2.1.1).  

(L4) let V(H)⊆V(K) and v∈  
 (V(H)), then ∃MD(v) such that MD(v)⊆V(H)sov ∈   

 (V(H)) ⊆V(H)⊆V(K). 

Thus we have v∈V(K) and there exist MD(v) such that MD(v)⊆V(H)⊆V(K). Hence, v∈  
 (V(H)) and so 

  
 (V(H)) ⊆  

 (V(K)). 
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(L5) let v ∈  
 (V(H) ⋂V(K)), then ∃MD(v) such that MD(v)⊆(V(H)) ⋂ V(K)) so MD(v)⊆V(H) and 

MD(v)⊆V(K). Thus we have v ∈  
 (V(H)) ∧ v ∈  

 (V(K)). Hence, v ∈  
 (V(H)) ⋂   

 (V(K)) and so 

  
 (V(H) ⋂V(K)) ⊆  

 (V(H)) ⋂   
 (V(K)).  

(L6)let V(H) ⊆V(H) ⋃ V(K) or V(K) ⊆V(H) ⋃V(K) 

then,  
 (V(H)) ⊆  

 (V(H) ⋃V(K)) ∨   
 (V(K))⊆  

 (V(H) ⋃V(K)). 

Hence,   
 (V(H) ⋃V(K)) ⊇  

 (V(H)) ⋃  
 (V(H)). 

(L7) let v∈  
 (V(H)) ⇔v∈V(H), ∃MD(v)⊆V(H) 

⇔v∈V(G)⎼ [V(G)⎼V(H)], ∃MD(v): MD(v)⋂ [V(G)⎼V(H)] =  

⇔ v ∉   
 [V(G)⎼V(H)] 

⇔ v ∈ V(G) ⎼ [  
 (V(G)⎼V(H))] 

⇔   
 (V(H)) = V(G)⎼ [  

 (V(G) ⎼V(H))]. 

The proof (U1), (U2) and (U3) by Definition(2.1.1).  

(U4) let V(H)⊆V(K) and v∈   
 (V(H)), we have: 

(1) v∈V(H)⟹v∈V(H)⊆V(K)⟹v∈V(K)⊆   
 (V(K))⟹ v ∈   

 (V(K)). 

(2) v∈V(G)⎼V(H). Then v∈  
 (V(H))⟹∀MD(v): MD(v)⋂V(H) and since V(H)⊆V(K) thus we 

have ∀ MD(v): MD(v)⋂V(H) and hence we have  

(1) v∈V(K)⎼V(H)⟹v∈V(K)⟹v∈  
 (V(K)). 

(2) v∈V(G)⎼V(K). So ∀ MD(v), MD(v)⋂V(K)⟹v∈  
 (V(K)). Hence, by (1) and (2) we have 

  
 (V(H)) ⊆  

 (V(K)). 

(U5) let V(H) ⋂V(K) ⊆ V(H) and V(H) ⋂V(K) ⊆V(K) 

then,  
 (V(H) ⋂V(K)) ⊆  

 (V(H))∧  
 (V(H) ⋂V(K)) ⊆  

 (V(K)) 

Hence,   
 (V(H) ⋂V(K)) ⊆  

 (V(H)) ⋂   
 (V(H)). 

(U6) let v∉  
 (V(H) ⋃ V(K)), then v∉ (V(H) ⋃ V(K)) and v∈V(G) ⎼(V(H) ⋃ V(K)), ∃MD(v), MD(v)⋂ [V(H) 

⋃ V(K)] = , so v∈ [V(G) ⎼V(H)],∃MD(v), (MD(v) ⋂V(H)) ⋃(MD(v) ⋂ V(K)) . Thus, v∈ V(G) ⎼ V(H), 

∃MD(v), MD(v) ⋂V(H) = ∧ v∈ V(G) ⎼ V(H), ∃MD(v), MD(v) ⋂V(K)=  ⟹ v ∉  
 (V(H))∧v ∉  

 (V(K))⟹ 

v ∉(  
 (V(H))⋃  

 (V(K))). Hence, we have   
 (V(H) ⋃V(K)) ⊇  

 (V(H)) ⋃  
 (V(K)). 

(U7) By substituting V(G)⎼V(H) for V(H) in (L7) we have   
 (V(H)) = V(G)⎼ [  

 (V(G) ⎼V(H))]. 

(LU) Obviously, by (L1) and (U1) we get   
 (V(H)) ⊆  

 (V(H)). 

 

Remark 2.1.7.Let G = (V(G), E(G)) be a generalization approximation space and H, K⊆G. Then the 

following are not necessarily true. 

(L8)   
 (V(H)) =   

 (  
 (V(H)), 

(L9)   
 (V(H)) =   

 (  
 (V(H)), 

(L10) V(H) ⊆   
 (  

 (V(H)), 

(L11)   
 (V(H)) ⊆  

 (  
 (V(H)), 

(L12)   
 (V(H) ⋃V(K)) =  

 (V(H)) ⋃  
 (V(K)), 

(U8)  
 (V(H)) =   

 (  
 (V(H)), 

(U9)   
 (V(H)) =   

 (  
 (V(H)), 

(U10) V(H) ⊇  
 (  

 (V(H)), 

(U11)    
 (V(H)) ⊇  

 (  
 (V(H)) and 

(U12)   
 (V(H) ⋃V(K)) =  

 (V(H)) ⋃  
 (V(K)). 

 

 The following example is employed as a conter example to show this remark  

Example 2.1.8.According to Example (2.1.4), we have  
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(L₈) if H = (V(H), E(H)): V(H) = {v₁, v₂, v₄}, E(H) = {(v₁, v₂), (v₁, v₄), (v₂, v₂), (v₂, v₄)}, then   
 (V(H)) =  {v₁, 

v₄},   
 (  

 (V(H)) = {v₁}. Therefore,   
 (V(H))   

 (  
 (V(H)). 

(L₉) if H = (V(H), E(H)): V(H) = {v₁, v₃}, E(H) = , then   
 (V(H)) = {v₁, v₃},   

 (  
 (V(H)) = {v₁, v₂, v₃, v₄}. 

Therefore,   
 (V(H))   

 (  
 (V(H)). 

(L₁₀) if H = (V(H), E(H)): V(H) = {v₂, v₄, v₅}, E(H) = {(v₂, v₂), (v₂, v₄), (v₄, v₅), (v₅, v₂), (v₅, v₅)}, then 

  
 (  

 (V(H)) = {v₅}. Therefore, V(H) ⊈  
 (  

 (V(H)). 

(L₁₁) if H = (V(H), E(H)): V(H) = {v₂, v₅}, E(H) = {(v₂, v₂), (v₅, v₂), (v₅, v₅)}, then   
 (V(H)) = {v₅}, 

  
 (  

 (V(H)) = . Therefore,   
 (V(H)) ⊈  

 (  
 (V(H)).  

(L₁₂) letH = (V(H), E(H)): V(H) = {v₁, v₂, v₃, v₄}, E(H) = {(v₁, v₂), (v₁ v₄), (v₂, v₂), (v₂, v₃), (v₂, v₄), (v₄, v₃)}and 

K = (V(K), E(K)): V(K) = {v₁, v₂, v₃, v₅}, E(K) = {(v₁, v₂), (v₂, v₂), (v₂, v₃), (v₅, v₂), (v₅, v₅)}then   
 (V(H)) ={v₁, 

v₂, v₃, v₄}and   
 (V(K)) = {v₁, v₂, v₃, v₅} But, H⋂K = (V(H)⋂V(K),E(H)⋂E(K)): V(H)⋂V(K) = {v₁, v₂, v₃}, 

E(H)⋂E(K) = {(v₁, v₂), (v₂, v₂), (v₂, v₃)} such that   
 (V(H) ⋂V(K))  = {v₁, v₃} and so   

 (V(H) ⋂V(K)) 

  
 (V(H)) ⋂   

 (V(H)). 

(U₈) if H = (V(H), E(H)): V(H) = {v₁, v₅}, E(H) =, then   
 (V(H)) = {v₁, v₄, v₅},   

 (  
 (V(H))) = {v₁, v₂, v₄, 

v₅}. Therefore,   
 (V(H))  

 (  
 (V(H))). 

(U₉) if H = (V(H), E(H)): V(H) = {v₃, v₄}, E(H) = {(v₄, v₃)}, then   
 (V(H)) = {v₃, v₄},   

 (  
 (V(H))) = {v₃}. 

Therefore,   
 (V(H))   

 (  
 (V(H))). 

(U₁₀) if H = (V(H), E(H)): V(H) = {v₁, v₂, v₅}, E(H) = {(v₁, v₂), (v₂, v₂), (v₅, v₂),  (v₅, v₅)}, then   
 (V(H) = {v₁, 

v₂, v₅},   
 (  

 (V(H)) = {v₁, v₂, v₄, v₅}. Therefore, V(H) ⊉  
 (  

 (V(H)).  

(U₁₁) if H = (V(H), E(H)): V(H) = {v₂, v₃}, E(H) = {(v₂, v₂), (v₂, v₃)}, then   
 (V(H)) = {v₂, v₃, v₄}, 

  
 (  

 (V(H))) = {v₂, v₃, v₄, v₅}. Therefore,   
 (V(H)) ⊉  

 (  
 (V(H))). 

(U₁₂) letH = (V(H), E(H)): V(H) = {v₄}, E(H) = and K = (V(K), E(K)): V(K) = {v₅}, E(K) = ,then   
 (V(H)) = 

{v₄} and   
 (V(K)) = {v₅} But, H⋃K = (V(H)⋃V(K),E(H)⋃E(K)): V(H)⋃V(K) = {v₄, v₅}, E(H)⋃E(K) = {(v₄, v₅), 

(v₅, v₅)} such that   
 (V(H) ⋃V(K)) = {v₂, v₄, v₅} and so   

 (V(H) ⋃V(K))   
 (V(H)) ⋃  

 (V(K)). 

 

2.2.  Second New Approximation Operators Using Mixed Degree Systems. 

 This section is devoted to propose a set-theoretic framework for granular computing using 

mixed degree systems. Considering the generalized approximation space G = (V(G), E(G)), we 

introduce a new definition of the lower and upper approximation operators using mixed degree 

systems. The approximations are constructed using (out, in and mixed) degree systems. A 

comparison between these three approaches is given.  

 

Definition 2.2.1. Let G = (V(G), E(G)) be a generalization approximation space and H⊆G. Then  

(a) the second lower and upper approximations of H using out degree systems are denoted by 

  
 (V(H)) and   

 (V(H)) and defined by  

  
 (V(H)) = {v ∈V(G) ; OD(v) ⊆V(H)}, 

  
 (V(H)) = {v ∈V(G) ; OD(v) ⋂V(H)}, 

(b) the second lower and upper approximations of H using in degree systems are denoted by 

  
 (V(H)) and   

 (V(H)) and defined by  

  
 (V(H)) = {v ∈V(G) ; ID(v) ⊆V(H)}, 

  
 (V(H)) = {v ∈V(G) ; ID(v) ⋂V(H)}, 

(c) the second lower and upper approximations of H using mixed degree systems are denoted by 

  
 (V(H)) and   

 (V(H)) and defined by  

  
 (V(H)) = {v ∈V(G) ; for some MD(v) ⊆V(H)}, 

  
 (V(H)) = {v ∈V(G) ; for all MD(v) ⋂V(H)}. 
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Definition 2.2.2. Let G = (V(G), E(G)) be a generalization approximation space and H⊆G. Then  

(a) the second boundary, positive and negative regions of H using out degree systems are denoted 

by    
 (V(H)),     

 (V(H))  and     
 (V(H)) and defined by  

   
 (V(H)) =   

 (V(H)) ⎼  
 (V(H)), 

    
 (V(H)) =   

 (V(H)), 

    
 (V(H)) = V(G) ⎼  

 (V(H)), 

(b) the second boundary, positive and negative regions of H using in degree systems are denoted by 

   
 (V(H)),     

 ((V(H))  and     
 (V(H)) and defined by  

   
 (V(H)) =   

 (V(H)) ⎼  
 (V(H)), 

    
 ((V(H)) =   

 (V(H)), 

    
 (V(H)) = V(G) ⎼  

 (V(H)), 

(c) the second boundary, positive and negative regions of H using mixed degree systems are 

denoted by    
 (V(H)),     

 (V(H))  and     
 (V(H)) and defined by  

   
 (V(H)) =   

 (V(H)) ⎼  
 (V(H)), 

    
 (V(H)) =   

 (V(H)), 

    
 (V(H)) = V(G) ⎼  

 (V(H)). 

 

Definition 2.2.3. Let G = (V(G), E(G)) be a generalization approximation space. The second accuracy 

of the approximations of a subgraphH⊆G using (out, in and mixed) degree systems are denoted by 

(  
  (V(H)),  

  (V(H)) and  
  (V(H))) and defined by  

  
  (V(H)) = 1 ⎼

    
        

      
, 

  
  (V(H)) = 1 ⎼

    
        

      
, 

  
  (V(H)) = 1 ⎼

    
        

      
. 

It is obvious that 0 ≤   
  (V(H))≤ 1, 0 ≤   

  (V(H))≤ 1 and 0 ≤   
  (V(H))≤ 1. Moreover, if                                             

  
  (V(H)) = 1 or   

  (V(H)) = 1 or   
  (V(H)) = 1, then H is called H-definable (H-exact) graph. 

Otherwise, it is called H-rough. 

 

Example 2.2.4.Accordingly, to Example (2.1.4) we have the following table 

Table 2.2.1:   
  (V(H)),   

  (V(H)) and   
  (V(H)) for all H ⊆G. 

V(H)   
  (V(H))   

  (V(H))   
  (V(H)) 

{v₁} 1 3/5 1 

{v₂} 2/5 2/5 4/5 

{v₃} 3/5 1 1 

{v₄} 3/5 3/5 1 

{v₅} 3/5 3/5 4/5 

{v₁,v₂} 2/5 3/5 4/5 

{v₁,v₃} 3/5 3/5 3/5 

{v₁,v₄} 3/5 1/5 4/5 

{v₁,v₅} 3/5 2/5 3/5 

{v₂,v₃} 1/5 2/5 3/5 

{v₂,v₄} 3/5 2/5 3/5 

{v₂,v₅} 2/5 1/5 3/5 

{v₃, v₄} 2/5 3/5 1 
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{v₃, v₅} 3/5 3/5 3/5 

{v₄, v₅} 1/5 3/5 4/5 

{v₁, v₂, v₃} 1/5 3/5 4/5 

{v₁,v₂, v₄} 3/5 3/5 3/5 

{v₁,v₂, v₅} 2/5 3/5 1 

{v₁,v₃, v₄} 2/5 1/5 3/5 

{v₁,v₃, v₅} 3/5 2/5 3/5 

{v₁,v₄, v₅} 1/5 2/5 3/5 

{v₂,v₃, v₄} 3/5 2/5 3/5 

{v₂,v₃, v₅} 3/5 1/5 4/5 

{v₂,v₄, v₅} 3/5 3/5 3/5 

{v₃, v₄, v₅} 2/5 3/5 4/5 

{v₁,v₂, v₃, v₄} 3/5 3/5 4/5 

{v₁,v₂, v₃, v₅} 3/5 3/5 1 

{v₁,v₂, v₄, v₅} 3/5 1 1 

{v₁,v₃, v₄, v₅} 2/5 2/5 4/5 

{v₂,v₃, v₄, v₅} 1 3/5 1 

V(G) 1 1 1 

 1 1 1 

 

Theorem 2.2.5. Let G = (V(G), E(G)) be a generalization approximation space and H⊆G. Then 

(a)   
 (V(H)) =   

 (V(H)) ⋃  
 (V(H)), 

(b)   
 (V(H)) =   

 (V(H)) ⋂  
 (V(H)), 

(c)    
 (V(H)) =    

 (V(H))⋂   
 (V(H)) and  

(d)   
  (V(H)) ≥ max{  

  (V(H)),  
  (V(H))}. 

Proof. 

(a) Let v∈ (  
 (V(H)) ⋃  

 (V(H)))  

⇔v∈  
 (V(H)) ∨ v ∈   

 (V(H)) 

⇔OD(v)⊆V(H) ∨ ID(v)⊆V(H) 

⇔∃MD(v) such that MD(v)⊆V(H) 

⇔v∈  
 (V(H)) 

So,   
 (V(H)) =   

 (V(H)) ⋃  
 (V(H)). 

(b) Let v∈ (  
 (V(H)) ⋂  

 (V(H))) 

⇔v∈ (  
 (V(H)) ∧  

 (V(H))) 

⇔ (OD(v)⋂V(H) ) ∧ (ID(v)⋂ V(H) ) 

⇔ for each MD(v), MD(v) ⋂ V(H)  

⇔v∈  
 (V(H)) 

So,   
 (V(H)) =   

 (V(H)) ⋂  
 (V(H)). 

(c) and (d) is similar to the proof (c) and (d) in Theorem (2.17) in [21]. 

 In the following proposition, we investigate the relation between the approximation 

operators  
 ,   

  which introduced in the previous section and the approximation operators   
 ,  

 . 

 

Proposition 2.2.6. Let G = (V(G), E(G)) be a generalization approximation space and H⊆G. Then 

(a)   
 (V(H))⊆   

 (V(H)), 
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(b)   
 (V(H))⊆  

 (V(H)), 

(c)    
 (V(H))⊆   

 (V(H)) and 

(d)   
  (V(H)) ≤  

  (V(H)). 

Proof. 

(a) Let v∈  
 (V(H)), then by Definition (2.1.1), we have v∈V(H) and MD(v) ; MD(v)⊆V(H), so by 

Definition (2.2.1), we get v∈  
 (V(H)). Hence,   

 (V(H))⊆   
 (V(H)). 

(b) Suppose that v∉  
 (V(H)), then by Definition (2.1.1), we have v∉V(H) and v∈V(G)⎼V(H) such that 

∃MD(v) ; MD(v)⋂V(H) = . Thus, by Definition (2.2.1), v∉  
 (V(H)). Therefore, 

  
 (V(H))⊆  

 (V(H)). 

(c) By using (a) and (b), we have   
 (V(H))⊆  

 (V(H)).  

Since   
 (V(H)) =   

 (V(H))⎼  
 (V(H)) 

⊆  
 (V(H))⎼  

 (V(H)). 

(d) By using (c), we have    
 (V(H))⊆   

 (V(H)) 

⟹|   
 (V(H))| ≤ |   

 (V(H))| 

⟹ 
    

        

      
  ≤  

    
        

      
 

⟹ 1 ⎼
    

        

      
 ≥ 1 ⎼

    
        

      
 

⟹   
  (V(H)) ≥  

  (V(H)). 

 

Remark 2.2.7. Let G = (V(G), E(G)) be a generalization approximation space and H⊆G, then the 

following are not necessarily true. 

(a)   
 (V(H))=  

 (V(H)), 

(b)   
 (V(H))=  

 (V(H)), 

(c)    
 (V(H))=    

 (V(H)) and 

(d)   
  (V(H)) =  

  (V(H)). 

(e)  

 The following example illustrates this remark  

Example 2.2.8.According to Examples (2.1.4) and (2.2.4), if H = (V(H), E(H)): V(H) = {v₄, v₅}, E(H) = {(v₄, 

v₅), (v₅, v₅)} 

(a)   
 (V(H)) = {v₅},   

 (V(H)) = {v₁, v₃, v₅}. Hence,   
 (V(H))  

 (V(H)), 

(b)   
 (V(H)) = {v₂, v₄, v₅},   

 (V(H)) = {v₂, v₅}. Hence,   
 (V(H))  

 (V(H)), 

(c)    
 (V(H)) = {v₂, v₅},    

 (V(H)) = {v₂}. Hence,    
 (V(H))   

 (V(H)), 

(d)   
  (V(H)) = 4/5,   

  (V(H)) = 3/5. Hence,   
  (V(H))  

  (V(H)). 

 Consider the generalized approximation space G = (V(G), E(G)), Proposition (2.2.6) proves 

that the approximations of graphs using the operators   
  and   

  are accurate then the 

approximations obtained by using the operators   
  and   

  since   
  (V(H)) ≤   

  (V(H)). For this 

reason, we study in detail the properties of   
  and   

  in the next section.  

 

2.3 Properties ofthe Second New Approximation Operators   
 and   

 . 

 The core concepts of classical rough set theory are lower and upper approximation 

operators based on equivalence relation. This section studies in detail the properties of the 

approximation operators   
 and   

 . In this setting, some of common properties of classical lower 

and upper approximation operators are no longer satisfied. So, we investigate conditions for a 

relation under which these properties hold for the approximation operators   
 and   

 . 
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 Some properties of the approximation operators   
  and   

  are given in the following 

proposition.  

Proposition 2.3.1.Let G = (V(G), E(G)) be a generalization approximation space and H, K⊆G. Then 

(L2)   
 (V(G)) = V(G), 

(L4) If V(H)⊆V(K), then   
 (V(H)) ⊆  

 (V(K)), 

(L5)   
 (V(H) ⋂V(K)) ⊆  

 (V(H)) ⋂   
 (V(K)), 

(L6)   
 (V(H) ⋃V(K)) ⊇  

 (V(H)) ⋃  
 (V(K)), 

(L7)   
 (V(H)) = V(G)⎼ [  

 (V(G) ⎼V(H))], 

(U3)   
 () = , 

(U4) If V(H)⊆V(K), then   
 (V(H)) ⊆  

 (V(K)), 

(U5)   
 (V(H) ⋂V(K)) ⊆  

 (V(H)) ⋂   
 (V(K)), 

(U6)   
 (V(H) ⋃V(K)) ⊇  

 (V(H)) ⋃  
 (V(K)) and 

(U7)  
 (V(H)) = V(G) ⎼ [  

 (V(G) ⎼ V(H))]. 

Proof. 

The proof (L2) by Definition(2.2.1). 

(L4) let V(H)⊆V(K) and v∈   
 (V(H)), then ∃MD(v) such that MD(v)⊆V(H) sov ∈   

 (V(H))             

⊆V(H)⊆V(K). Thus we have v∈V(K) and there exist MD(v) such that MD(v)⊆V(H)⊆V(K). Hence, 

v∈  
 (V(H)) and so   

 (V(H)) ⊆  
 (V(K)).  

(L5) let V(H) ⋂V(K) ⊆ V(H) and V(H) ⋂V(K) ⊆V(K) 

then,  
 (V(H) ⋂V(K)) ⊆  

 (V(H))∧  
 (V(H) ⋂V(K)) ⊆  

 (V(K)) 

Hence,   
 (V(H) ⋂V(K)) ⊆  

 (V(H)) ⋂   
 (V(H)). 

(L6) let V(H) ⊆V(H) ⋃ V(K) or V(K) ⊆V(H) ⋃V(K) 

then,  
 (V(H)) ⊆  

 (V(H) ⋃V(K)) ∨   
 (V(K))⊆  

 (V(H) ⋃V(K)). 

Hence,   
 (V(H) ⋃V(K)) ⊇  

 (V(H)) ⋃  
 (V(H)). 

(L7) let v∈  
 (V(H)) ⇔v∈V(H), ∃MD(v)⊆V(H) 

                                        ⇔v∈V(G)⎼ [V(G)⎼V(H)], ∃MD(v): MD(v)⋂ [V(G)⎼V(H)] =  

                                        ⇔ v ∉   
 [V(G)⎼V(H)] 

                                        ⇔ v ∈ V(G) ⎼ [  
 (V(G)⎼V(H))] 

                                        ⇔   
 (V(H)) = V(G)⎼ [  

 (V(G) ⎼V(H))]. 

The proof (U3) by Definition(2.2.1). 

(U4) let V(H)⊆V(K) and v∈   
 (V(H)), we have: 

(1) v∈V(H)⟹v∈V(H)⊆V(K)⟹v∈ V(K)⊆   
 (V(K))⟹ v ∈   

 (V(K)). 

(2) v∈V(G)⎼V(H). Then v∈  
 (V(H))⟹∀ MD(v): MD(v)⋂V(H) and since V(H)⊆V(K) thus we 

have ∀ MD(v): MD(v)⋂V(H) and hence we have  

(1) v∈V(K)⎼V(H)⟹v∈V(K)⟹v∈  
 (V(K)). 

(2) v∈V(G)⎼V(K). So ∀ MD(v), MD(v)⋂V(K)⟹v∈  
 (V(K)). Hence, by (1) and (2) we have 

  
 (V(H)) ⊆  

 (V(K)). 

(U5) let V(H)⋂V(K)⊆V(H) and V(H) ⋂V(K)⊆V(K) 

then,   
 (V(H) ⋂ V(K))⊆  

 (V(H))∧  
 (V(H)⋂V(K))⊆  

 (V(K)) 

Hence,   
 (V(H) ⋂ V(K)) ⊆  

 (V(H))⋂  
 (V(H)). 

(U6)let V(H)⊆(V(H)⋃V(K)) or V(K) ⊆(V(H)⊆V(K)) 

then,   
 (V(H)) ⊆  

 (V(H)⋃V(K))∨  
 (V(K))⊆  

 (V(H) ⋃ V(K)) 

Hence,   
 (V(H) ⋃ V(K)) ⊇  

 (V(H))⋃  
 (V(H)). 

(U7) By substituting V(G)⎼V(H) for V(H) in (L7) we have   
 (V(H)) = V(G)⎼ [  

 (V(G) ⎼V(H))]. 

(LU) Obviously, by (L1) and (U1) we get   
 (V(H)) ⊆  

 (V(H)). 
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Remark 2.3.2.Let G = (V(G), E(G)) be a generalization approximation space and H, K⊆G. Then the 

following are not necessarily true. 

(L1)   
 (V(H)) ⊆V(H), 

(L3)   
 () = ,  

(L8)   
 (V(H)) =   

 (  
 (V(H)), 

(L9)   
 (V(H)) =   

 (  
 (V(H)), 

(L10) V(H) ⊆   
 (  

 (V(H)), 

(L11)   
 (V(H)) ⊆  

 (  
 (V(H)), 

(L12)   
 (V(H) ⋃V(K)) =  

 (V(H)) ⋃  
 (V(K)), 

(U1) V(H)⊆  
 (V(H)), 

(U2)   
 (V(G)) = V(G), 

(U8)  
 (V(H)) =   

 (  
 (V(H)), 

(U9)   
 (V(H)) =   

 (  
 (V(H)), 

(U10) V(H) ⊇  
 (  

 (V(H)), 

(U11)  
 (V(H)) ⊇  

 (  
 (V(H)), 

(U12)   
 (V(H) ⋃V(K)) =  

 (V(H)) ⋃  
 (V(K)) and 

(LU)   
 (V(H)) ⊆   

 (V(H)). 

 The following example illustrates this remark 

 

Example 2.3.3.According to Example (2.2.4). 

(L1) if H = (V(H), E(H)): V(H) = {v₂}, E(H) = {(v₂, v₂)}, then   
 (V(H)) =  {v₁, v₃}. Therefore,   

 (V(H)) 

⊈V(H). 

(L3)if H = (V(H), E(H)): V(H) = , E(H) = , then   
 (V(H)) =  {v₁, v₃}. Therefore,   

 () . 

(L8) if H = (V(H), E(H)): V(H) = {v₁, v₂}, E(H) = {(v₁, v₂), (v₂, v₂)}, then   
 (V(H)) =  {v₁, v₃, v₄},   

 (  
 (V(H)) 

= {v₁, v₃}. Therefore,   
 (V(H))   

 (  
 (V(H)). 

(L9) if H = (V(H), E(H)): V(H) = {v₁, v₃, v₅}, E(H) = {(v₅, v₅)}, then   
 (V(H)) = {v₁, v₃, v₄},   

 (  
 (V(H)) = 

{v₂, v₄}. Therefore,   
 (V(H))   

 (  
 (V(H)). 

(L10) if H = (V(H), E(H)): V(H) = {v₁, v₄}, E(H) = {(v₁, v₄)}, then   
 (V(H) = {v₂},   

 (  
 (V(H)) = {v₁, v₃}. 

Therefore, V(H) ⊈  
 (  

 (V(H)). 

(L11) if H = (V(H), E(H)): V(H) = {v₂, v₅}, E(H) = {(v₂, v₂), (v₅, v₂), (v₅, v₅)}, then   
 (V(H)) = {v₁, v₃, v₅}, 

  
 (  

 (V(H)) = {v₁, v₃, v₄}. Therefore,   
 (V(H)) ⊈  

 (  
 (V(H)).  

(L12) letH = (V(H), E(H)): V(H) = {v₃, v₄, v₅}, E(H) = {(v₄, v₃), (v₄, v₅), (v₅, v₅)}and K = (V(K), E(K)): V(K) = {v₁, 

v₂, v₃, v₄}, E(K) = {(v₁, v₂), (v₁, v₄), (v₂, v₂), (v₂, v₃), (v₂, v₄), (v₄, v₃)}then   
 (V(H)) = {v₁, v₃, v₄, v₅}and 

  
 (V(K)) = {v₁, v₂, v₃, v₄} But, H⋂K = (V(H)⋂V(K),E(H)⋂E(K)): V(H)⋂V(K) = {v₃, v₄}, E(H)⋂E(K) = {(v₄, 

v₃)} such that   
 (V(H) ⋂V(K))  = {v₁, v₃} and so   

 (V(H) ⋂V(K))   
 (V(H)) ⋂   

 (V(H)). 

(U1)if H = (V(H), E(H)): V(H) = {v₁, v₃}, E(H) = , then   
 (V(H)) = {v₂, v₄}. Therefore, V(H)⊈  

 (V(H)). 

(U2)if H = (V(H), E(H)): V(H) = V(G), E(H) = {(v₁, v₂), (v₁, v₄), (v₂, v₂), (v₂, v₃), (v₂, v₄), (v₄, v₃), (v₄, v₅), (v₅, 

v₂), (v₅, v₅)}, then   
 (V(H)) = {v₂, v₄, v₅}. Therefore,   

 (V(G))V(G). 

(U₈) if H = (V(H), E(H)): V(H) = {v₁, v₃}, E(H) = , then   
 (V(H)) = {v₂, v₄},   

 (  
 (V(H))) = {v₂, v₅}. 

Therefore,   
 (V(H))  

 (  
 (V(H))). 

(U9) if H = (V(H), E(H)): V(H) = {v₂, v₃}, E(H) = {(v₂, v₂), (v₂, v₃)}, then   
 (V(H)) = {v₂, v₄},   

 (  
 (V(H))) = 

{v₁, v₃}. Therefore,   
 (V(H))   

 (  
 (V(H))). 

(U10) if H = (V(H), E(H)): V(H) = {v₁, v₂, v₃}, E(H) = {(v₁, v₂), (v₂, v₂), (v₂, v₃)}, then   
 (V(H) = {v₁, v₃, v₄}, 

  
 (  

 (V(H)) = {v₂, v₄}. Therefore, V(H) ⊉  
 (  

 (V(H)).  
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(U11) if H = (V(H), E(H)): V(H) = {v₃, v₄, v₅}, E(H) = {(v₄, v₃), (v₄, v₅), (v₅, v₅)},  then   
 (V(H)) = {v₂, v₅}, 

  
 (  

 (V(H))) = {v₂, v₄, v₅}. Therefore,   
 (V(H)) ⊉  

 (  
 (V(H))). 

(U12) letH = (V(H), E(H)): V(H) = {v₄, v₅}, E(H) = {(v₄, v₅), (v₅, v₅)}and K = (V(K), E(K)): V(K) = {v₁, v₂, v₄}, 

E(K) = {(v₁, v₂), (v₁, v₄), (v₂, v₂), (v₂, v₄)},then   
 (V(H)) = {v₂, v₅} and   

 (V(K)) = {v₂, v₅} But, H⋃K = 

(V(H)⋃V(K),E(H)⋃E(K)): V(H)⋃V(K) = {v₁, v₂, v₄, v₅}, E(H)⋃E(K) = {(v₁, v₂), (v₁, v₄), (v₂, v₂), (v₂, v₄), (v₄, 

v₅), (v₅, v₂), (v₅, v₅)} such that   
 (V(H) ⋃V(K))  = {v₂, v₄, v₅} and so   

 (V(H) ⋃V(K))   
 (V(H)) 

⋃  
 (V(K)). 

(LU) if H = (V(H), E(H)): V(H) = {v₃}, E(H) = , then   
 (V(H)) = {v₁, v₃},   

 (V(H)) = . Therefore, 

  
 (V(H))  

 (V(H)). 

 

Proposition 2.3.4.Let G = (V(G), E(G)) be a non-empty finite serial graph. If V(G) = ⋃v ∈V(G)OD(v) then 

the following hold: 

(L3)   
 () = , 

(U2)   
 (V(G)) = V(G). 

Proof. 

(L3) Since G is a serial graph and V(G) = ⋃v ∈V(G)OD(v) then MD(v)  for all  v ∈v(G) and hence   
 () = 

.  

(U2) Since   
 () = ⟹ [  

 ()]ʿ = ʿ 

⟹V(G) ⎼  
 () = V(G) ⎼ 

⟹ V(G) ⎼   
 (V(G) ⎼ V(G)) = V(G). But   

 (V(H)) = V(G) ⎼  
 (V(G) ⎼ V(H)) for all H ⊆G. So   

 (V(G)) = 

V(G) ⎼   
 (V(G) ⎼ V(G)). Accordingly,   

 (V(G)) = V(G). 

 

Remark 2.3.5.Let G = (V(G), E(G)) be a non-empty finite serial graph. If V(G) = ⋃v ∈V(G)OD(v),then the 

properties (L1), (L8), (L9), (L10),(L11),(L12), (U1), (U8), (U9), (U10), (U11), (U12) and (LU) are not true in 

general for every H, K  ⊆G. 

 

 The next example illustrates this remark. 

Example 2.3.6. Let G = (V(G), E(G)): V(G) = {v₁, v₂, v₃, v₄, v₅}, E(G) = {(v₁, v₁), (v₂, v₃), (v₂, v₄), (v₃, v₄), (v₃, 

v₅), (v₄, v₁), (v₄, v₄),(v₅, v₂), (v₅, v₅)}. 

 

 

 

 

 

 

 

Figure 2.3.1 : Graph G given in Example 2.3.6. 

We get 

OD(v₁) = {v₁}, OD(v₂) = {v₃, v₄}, OD(v₃) =  {v₄, v₅}, OD(v₄) = {v₁, v₄}, OD(v₅) = {v₂, v₅} 

Also we have 

ID(v₁) = {v₁, v₄}, ID(v₂) = {v₅}, ID(v₃) = {v₂}, ID(v₄) = {v₂, v₃, v₄}, ID(v₅) = {v₃, v₅} 

Then we obtain 

MDS(v₁) = {{v₁},{v₁, v₄}}, MDS(v₂) = {{v₃, v₄}, {v₅}}, MDS(v₃) = {{v₄, v₅}, {v₂}}, MDS(v₄) = {{v₁, v₄}, {v₂, v₃, 

v₄}}, MDS(v₅) = {{v₂, v₅}, {v₃, v₅}}. 

Therefore, we have 

v₂ 

v₅ 

v₃ 

v₄ v₁ 
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(L1) if H = (V(H), E(H)): V(H) = {v₁, v₂, v₅}, E(H) = {(v₁, v₁), (v₅, v₂), (v₅, v₅)}, then   
 (V(H)) =  {v₁, v₂, v₃, v₅}. 

Therefore,   
 (V(H)) ⊈V(H).  

(L8) if H = (V(H), E(H)): V(H) = {v₁, v₂, v₃}, E(H) = {(v₁, v₁), (v₂, v₃)}, then   
 (V(H)) =  {v₁, v₃},   

 (  
 (V(H)) 

= {v₁}. Therefore,   
 (V(H))   

 (  
 (V(H)). 

(L9) if H = (V(H), E(H)): V(H) = {v₄, v₅}, E(H) = {(v₄, v₄), (v₅, v₅)}, then   
 (V(H)) = {v₂, v₃},   

 (  
 (V(H)) = 

{v₅}. Therefore,   
 (V(H))   

 (  
 (V(H)). 

(L10) if H = (V(H), E(H)): V(H) = {v₂, v₄}, E(H) = {(v₂, v₄), (v₄, v₄)}, then   
 (V(H) = {v₃, v₄},   

 (  
 (V(H)) = 

{v₂}. Therefore, V(H) ⊈  
 (  

 (V(H)). 

(L11) if H = (V(H), E(H)): V(H) = {v₁, v₃, v₄}, E(H) = {(v₁, v₁), (v₃, v₄), (v₄, v₁), (v₄, v₄)}, then   
 (V(H)) = {v₁, 

v₂, v₄},   
 (  

 (V(H)) = {v₁, v₃}. Therefore,   
 (V(H)) ⊈  

 (  
 (V(H)).  

(L12) letH = (V(H), E(H)): V(H) = {v₂, v₃, v₄}, E(H) = {(v₂, v₃), (v₂, v₄), (v₃, v₄), (v₄, v₄)}and K = (V(K), E(K)): 

V(K) = {v₂, v₃, v₅}, E(K) = {(v₂, v₃), (v₃, v₅), (v₅, v₂), (v₅, v₅)}then   
 (V(H)) = {v₂, v₃, v₄}and   

 (V(K)) = {v₂, 

v₃, v₅} But, H⋂K = (V(H)⋂V(K),E(H)⋂E(K)): V(H)⋂V(K) = {v₂, v₃}, E(H)⋂E(K) = {(v₂, v₃)} such that 

  
 (V(H) ⋂V(K))  = {v₃} and so   

 (V(H) ⋂V(K))   
 (V(H)) ⋂   

 (V(H)). 

(U1) if H = (V(H), E(H)): V(H) = {v₃, v₄}, E(H) = {(v₃, v₄), (v₄, v₄)}, then   
 (V(H)) = {v₄}. Therefore, V(H) 

⊈  
 (V(H)). 

(U₈) if H = (V(H), E(H)): V(H) = {v₄, v₅}, E(H) = {(v₄, v₄), (v₅, v₅)}, then   
 (V(H)) = {v₂},   

 (  
 (V(H))) = . 

Therefore,   
 (V(H))  

 (  
 (V(H))). 

(U9) if H = (V(H), E(H)): V(H) = {v₁, v₂, v₃}, E(H) = {(v₁, v₁), (v₂, v₃)}, then   
 (V(H)) = {v₁, v₄, v₅}, 

  
 (  

 (V(H))) = {v₁, v₂, v₃, v₄}. Therefore,   
 (V(H))   

 (  
 (V(H))). 

(U10) if H = (V(H), E(H)): V(H) = {v₁, v₅}, E(H) = {(v₁, v₁), (v₅, v₅)}, then   
 (V(H) = {v₁, v₂},   

 (  
 (V(H)) = 

{v₁, v₄}. Therefore, V(H) ⊉  
 (  

 (V(H)).  

(U11) if H = (V(H), E(H)): V(H) = {v₂, v₃, v₄}, E(H) = {(v₂, v₃), (v₂, v₄), (v₃, v₄), (v₄, v₄)},  then   
 (V(H)) = {v₃, 

v₄, v₅},   
 (  

 (V(H))) = {v₂, v₄, v₅}. Therefore,   
 (V(H)) ⊉  

 (  
 (V(H))). 

(U12) letH = (V(H), E(H)): V(H) = {v₂, v₅}, E(H) = {(v₅, v₂), (v₅, v₅)}and K = (V(K), E(K)): V(K) = {v₃, v₄}, E(K) 

= {(v₃, v₄), (v₂, v₄)},then   
 (V(H)) = {v₃, v₅} and   

 (V(K)) = {v₄} But, H⋃K = (V(H)⋃V(K),E(H)⋃E(K)): 

V(H)⋃V(K) = {v₂, v₃, v₄, v₅}, E(H)⋃E(K) = {(v₂, v₃), (v₂, v₄), (v₃, v₄), (v₄, v₄), (v₅, v₂), (v₅, v₅)} such that 

  
 (V(H) ⋃V(K))  = {v₂, v₃, v₄, v₅} and so   

 (V(H) ⋃V(K))   
 (V(H)) ⋃  

 (V(K)). 

(LU) if H = (V(H), E(H)): V(H) = {v₁, v₃, v₄}, E(H) = {(v₁, v₁), (v₃, v₄), (v₄, v₁), (v₄, v₄)}, then   
 (V(H)) = {v₁, 

v₂, v₄},   
 (V(H)) = {v₁, v₄}. Therefore,   

 (V(H))  
 (V(H)). 

 

Remark 2.3.7.Let G = (V(G), E(G)) be a non-empty finite serial graph. If V(G) ⋃v ∈V(G)OD(v),then the 

properties (L1), (L3), (L8), (L9),(L10),(L11), (L12),(U1),(U2),(U8),(U9),(U10),(U11),(U12) and (LU)are not 

necessarily true for every H, K  ⊆G. 

 

 The next example illustrates this remark. 

Example 2.3.8. Let G = (V(G), E(G)): V(G) = {v₁, v₂, v₃, v₄, v₅}, E(G) = {(v₁, v₁), (v₁, v₃), (v₂, v₃), (v₂, v₄), (v₃, 

v₄), (v₃, v₅), (v₄, v₁), (v₄, v₄), (v₅, v₅)}. 

  

 

 

 

 

 

Figure 2.3.2 : Graph G given in Example 2.3.8. 

v₂ 

v₅ 

v₃ 

v₄ v₁ 
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We get 

OD(v₁) = {v₁, v₃}, OD(v₂) = {v₃, v₄}, OD(v₃) =  {v₄, v₅}, OD(v₄) = {v₁, v₄}, OD(v₅) = {v₅} 

Also we have 

ID(v₁) = {v₁, v₄}, ID(v₂) = , ID(v₃) = {v₁, v₂}, ID(v₄) = {v₂, v₃, v₄}, ID(v₅) = {v₃, v₅} 

Then we obtain 

MDS(v₁) = {{v₁, v₃}, {v₁, v₄}}, MDS(v₂) = {{v₃, v₄}, }, MDS(v₃) = {{v₄, v₅}, {v₁, v₂}}, MDS(v₄) = {{v₁, v₄}, {v₂, 

v₃, v₄}}, MDS(v₅) = {{v₅}, {v₃, v₅}}. 

Consequently, we have 

(L1) if H = (V(H), E(H)): V(H) = {v₅}, E(H) = {(v₅, v₅)}, then   
 (V(H)) =  {v₂, v₅}. Therefore,   

 (V(H)) 

⊈V(H). 

(L3) if H = (V(H), E(H)): V(H) = , E(H) = , then   
 (V(H)) =  {v₂}. Therefore,   

 () . 

(L8) if H = (V(H), E(H)): V(H) = {v₁, v₃}, E(H) = {(v₁, v₁), (v₁, v₃)}, then   
 (V(H)) =  {v₁, v₂},   

 (  
 (V(H)) = 

{v₂, v₃}. Therefore,   
 (V(H))   

 (  
 (V(H)). 

(L9) if H = (V(H), E(H)): V(H) = {v₃, v₅}, E(H) = {(v₃, v₅), (v₅, v₅)}, then   
 (V(H)) = {v₂, v₅},   

 (  
 (V(H)) = 

{v₃, v₅}. Therefore,   
 (V(H))   

 (  
 (V(H)). 

(L10) if H = (V(H), E(H)): V(H) = {v₄, v₅}, E(H) = {(v₄, v₄), (v₅, v₅)}, then   
 (V(H) = {v₄, v₅},   

 (  
 (V(H)) = 

{v₂, v₅}. Therefore, V(H) ⊈  
 (  

 (V(H)). 

(L11) if H = (V(H), E(H)): V(H) = {v₁, v₂, v₅}, E(H) = {(v₁, v₁), (v₅, v₅)}, then   
 (V(H)) = {v₂, v₃, v₅}, 

  
 (  

 (V(H)) = {v₂, v₅}. Therefore,   
 (V(H)) ⊈  

 (  
 (V(H)).  

(L12) letH = (V(H), E(H)): V(H) = {v₁, v₄, v₅}, E(H) = {(v₁, v₁), (v₄, v₁), (v₄, v₄), (v₅, v₅)}and K = (V(K), E(K)): 

V(K) = {v₂, v₃, v₄}, E(K) = {(v₂, v₃), (v₂, v₄), (v₃, v₄), (v₄, v₄)}then   
 (V(H)) = V(G) and   

 (V(K)) = {v₂, v₄} 

But, H⋂K = (V(H)⋂V(K),E(H)⋂E(K)): V(H)⋂V(K) = {v₄}, E(H)⋂E(K) = {(v₄, v₄)} such that   
 (V(H) ⋂V(K))  

= {v₂} and so   
 (V(H) ⋂V(K))   

 (V(H)) ⋂   
 (V(H)). 

(U1) if H = (V(H), E(H)): V(H) = {v₁, v₂}, E(H) = {(v₁, v₁)}, then   
 (V(H)) = {v₁, v₄}. Therefore, 

V(H)⊈  
 (V(H)). 

(U2) if H = (V(H), E(H)): V(H) = V(G), E(H) = {(v₁, v₁), (v₁, v₃), (v₂, v₃), (v₂, v₄), (v₃, v₄), (v₃, v₅), (v₄, v₁), (v₄, 

v₄), (v₅, v₅)}, then   
 (V(H)) = {v₁, v₃, v₄, v₅}. Therefore,   

 (V(G))V(G). 

(U₈) if H = (V(H), E(H)): V(H) = {v₁, v₂, v₃}, E(H) = {(v₁, v₁), (v₁, v₃), (v₂, v₃)}, then   
 (V(H)) = {v₁, v₄}, 

  
 (  

 (V(H))) = {v₁, v₃, v₄}. Therefore,   
 (V(H))  

 (  
 (V(H))). 

(U9) if H = (V(H), E(H)): V(H) = {v₂, v₄, v₅}, E(H) = {(v₂, v₄), (v₄, v₄), (v₅, v₅)}, then   
 (V(H)) = {v₃, v₄, v₅}, 

  
 (  

 (V(H))) = {v₂, v₃, v₅}. Therefore,   
 (V(H))   

 (  
 (V(H))). 

(U10) if H = (V(H), E(H)): V(H) = {v₁, v₄, v₅}, E(H) = {(v₁, v₁), (v₄, v₁), (v₄, v₄), (v₅, v₅)}, then   
 (V(H) = V(G), 

  
 (  

 (V(H)) = {v₁, v₃, v₄, v₅}. Therefore, V(H) ⊉  
 (  

 (V(H)).  

(U11) if H = (V(H), E(H)): V(H) = {v₂, v₄}, E(H) = {(v₂, v₄), (v₄, v₄)},  then   
 (V(H)) = {v₃, v₄},   

 (  
 (V(H))) 

= {v₁, v₄}. Therefore,   
 (V(H)) ⊉  

 (  
 (V(H))). 

(U12) letH = (V(H), E(H)): V(H) = {v₃, v₅}, E(H) = {(v₃, v₅), (v₅, v₅)}and K = (V(K), E(K)): V(K) = {v₄, v₅}, E(K) = 

{(v₄, v₄), (v₅, v₅)},then   
 (V(H)) = {v₅} and   

 (V(K)) = {v₄, v₅} But, H⋃K = (V(H)⋃V(K),E(H)⋃E(K)): 

V(H)⋃V(K) = {v₃, v₄, v₅}, E(H)⋃E(K) = {(v₃, v₄), (v₃, v₅), (v₄, v₄), (v₅, v₅)} such that   
 (V(H) ⋃V(K))  = {v₁, 

v₄, v₅} and so   
 (V(H) ⋃V(K))   

 (V(H)) ⋃  
 (V(K)). 

(LU) if H = (V(H), E(H)): V(H) = {v₁, v₂, v₄, v₅}, E(H) = {(v₁, v₁), (v₂, v₄), (v₄, v₁), (v₄, v₄), (v₅, v₅)}, then 

  
 (V(H)) = V(G),   

 (V(H)) = {v₁, v₃, v₄, v₅}. Therefore,   
 (V(H))  

 (V(H)). 

 

Proposition 2.3.9.Let G = (V(G), E(G)) be a non-empty finite reflexive graph, then the following 

properties holds for every H ⊆G. 

(L1)   
 (V(H)) ⊆V(H), 
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(L3)   
 () = , 

(U1) V(H)⊆  
 (V(H)), 

(U2)   
 (V(G)) = V(G) and  

(LU)   
 (V(H)) ⊆   

 (V(H)). 

Proof. 

(L1) Since G is reflexive graph, then v ∈MD(v) for all v ∈V(G). Now, let v ∈  
 (V(H)) ⟹∃MD(v), MD(v) 

⊆V(H). But v ∈MD(v) for all  v ∈V(G), so, v ∈V(H). Therefore,   
 (V(H)) ⊆V(H). 

(L3) Since any non-empty finite reflexive graph is serial withV(G) ⋃v ∈V(G)OD(v),then the proof (L3) is 

immediately derived from Proposition (2.3.4). 

(U1) let v ∈V(H) and since v ∈MD(v)for all v ∈V(G) then for all MD(v), MD(v) ⋂ V(H). So, v 

∈  
 (V(H)) and hence V(H)⊆  

 (V(H)). 

(U2) Since any non-empty finite reflexive graph is serial withV(G) ⋃v ∈V(G)OD(v),then the proof (U2) is 

immediately derived from Proposition (2.3.4). 

(LU) By Using (L1) and (U1) we have   
 (V(H)) ⊆  

 (V(H)). 

 

Remark 2.3.10, Let G = (V(G), E(G)) be a non-empty finite reflexive graph, then the properties 

(L8),(L9),(L10),(L11),(L12),(U8),(U9),(U10), (U11) and (U12) are not true in general for every H, K  ⊆G.  

  

 The following example illustrates this remark. 

Example 2.3.11. Let G = (V(G), E(G)): V(G) = {v₁, v₂, v₃, v₄, v₅}, E(G) = {(v₁, v₁), (v₁, v₃), (v₂, v₂), (v₂, v₄), 

(v₃, v₃), (v₃, v₄), (v₄, v₁), (v₄, v₄), (v₅, v₂), (v₅, v₅)}. 

 
Figure 2.3.3 : Graph G given in Example 2.3.11. 

We get 

OD(v₁) = {v₁, v₃}, OD(v₂) = {v₂, v₄}, OD(v₃) =  {v₃, v₄}, OD(v₄) = {v₁, v₄}, OD(v₅) = {v₂, v₅} 

Also we have 

ID(v₁) = {v₁, v₄}, ID(v₂) = {v₂, v₅}, ID(v₃) = {v₁, v₃}, ID(v₄) = {v₂, v₃, v₄}, ID(v₅) = {v₅} 

Then we obtain 

MDS(v₁) = {{v₁, v₃}, {v₁, v₄}}, MDS(v₂) = {{v₂, v₄}, {v₂, v₅}}, MDS(v₃) = {{v₃, v₄}, {v₁, v₃}}, MDS(v₄) = {{v₁, v₄}, 

{v₂, v₃, v₄}}, MDS(v₅) = {{v₂, v₅}, {v₅}}. 

Therefore, we have  

(L8) if H = (V(H), E(H)): V(H) = {v₂, v₄}, E(H) = {(v₂, v₂), (v₂, v₄), (v₄, v₄)}, then   
 (V(H)) =  {v₂}, 

  
 (  

 (V(H)) = . Therefore,   
 (V(H))   

 (  
 (V(H)). 

(L9) if H = (V(H), E(H)): V(H) = {v₁, v₃}, E(H) = {(v₁, v₁), (v₁, v₃), (v₃, v₃)}, then   
 (V(H)) = {v₁, v₃}, 

  
 (  

 (V(H)) = {v₁, v₃, v₄}. Therefore,   
 (V(H))   

 (  
 (V(H)). 

(L10) if H = (V(H), E(H)): V(H) = {v₃, v₅}, E(H) = {(v₃, v₃), (v₅, v₅)}, then   
 (V(H) = {v₃, v₅},   

 (  
 (V(H)) = 

{v₅}. Therefore, V(H) ⊈  
 (  

 (V(H)). 

(L11) if H = (V(H), E(H)): V(H) = {v₃, v₄}, E(H) = {(v₃, v₃), (v₃, v₄), (v₄, v₄)}, then   
 (V(H)) = {v₃}, 

  
 (  

 (V(H)) = . Therefore,   
 (V(H)) ⊈  

 (  
 (V(H)).  

(L12) letH = (V(H), E(H)): V(H) = {v₁, v₂, v₃}, E(H) = {(v₁, v₁), (v₁, v₃), (v₂, v₂), (v₃, v₃)}and K = (V(K), E(K)): 

V(K) = {v₁, v₂, v₄}, E(K) = {(v₁, v₁), (v₂, v₂), (v₂, v₄), (v₄, v₄)}then   
 (V(H)) = {v₁, v₃}and   

 (V(K)) = {v₁, v₂, 
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v₄} But, H⋂K = (V(H)⋂V(K),E(H)⋂E(K)): V(H)⋂V(K) = {v₁, v₂}, E(H)⋂E(K) = {(v₁, v₁), (v₂, v₂)} such that 

  
 (V(H) ⋂V(K))  =  and so   

 (V(H) ⋂V(K))   
 (V(H)) ⋂   

 (V(H)). 

(U₈) if H = (V(H), E(H)): V(H) = {v₁, v₂, v₅}, E(H) = {(v₁, v₁), (v₂, v₂), (v₂, v₅), (v₅, v₅)}, then   
 (V(H)) = {v₁, 

v₅},   
 (  

 (V(H))) = {v₅}. Therefore,   
 (V(H))  

 (  
 (V(H))). 

(U9) if H = (V(H), E(H)): V(H) = {v₁, v₅}, E(H) = {(v₁, v₁), (v₅, v₅)}, then   
 (V(H)) = {v₁, v₅},   

 (  
 (V(H))) = 

{v₅}. Therefore,   
 (V(H))   

 (  
 (V(H))). 

(U10) if H = (V(H), E(H)): V(H) = {v₂, v₃, v₄, v₅}, E(H) = {(v₂, v₂), (v₂, v₄), (v₃, v₃), (v₃, v₄), (v₄, v₄), (v₅, v₂), 

(v₅, v₅)}, then   
 (V(H) = {v₂, v₃, v₄, v₅},   

 (  
 (V(H)) = V(G). Therefore, V(H) ⊉  

 (  
 (V(H)).  

(U11) if H = (V(H), E(H)): V(H) = {v₂, v₃, v₅}, E(H) = {(v₂, v₂), (v₃, v₃), (v₅, v₂), (v₅, v₅)},  then   
 (V(H)) = {v₁, 

v₂, v₃, v₄},   
 (  

 (V(H))) = V(G). Therefore,   
 (V(H)) ⊉  

 (  
 (V(H))). 

(U12) letH = (V(H), E(H)): V(H) = {v₁, v₄}, E(H) = {(v₁, v₁), (v₄, v₁), (v₄, v₄)}and K = (V(K), E(K)): V(K) = {v₁, 

v₅}, E(K) = {(v₁, v₁), (v₅, v₅)},then   
 (V(H)) = {v₁, v₃, v₄} and   

 (V(K)) = {v₁, v₅} But, H⋃K = 

(V(H)⋃V(K),E(H)⋃E(K)): V(H)⋃V(K) = {v₁, v₄, v₅}, E(H)⋃E(K) = {(v₁, v₁), (v₄, v₁), (v₄, v₄), (v₅, v₅)} such that 

  
 (V(H) ⋃V(K))  = {v₁, v₄, v₅} and so   

 (V(H) ⋃V(K))   
 (V(H)) ⋃  

 (V(K)). 

 

Proposition 2.3.12.Let G = (V(G), E(G)) be a non-empty finite symmetric graph, then the following 

properties holds for every H, K ⊆G. 

(L10) V(H) ⊆   
 (  

 (V(H)), 

(L12)   
 (V(H) ⋂V(K)) =  

 (V(H)) ⋂  
 (V(K)), 

(U10) V(H) ⊇  
 (  

 (V(H)) and 

(U12)   
 (V(H) ⋃V(K)) =  

 (V(H)) ⋃  
 (V(K)). 

Proof. 

(L10) since G is a symmetric graph, then G= Gˉ¹ and consequently we have MD(v) = OD(v) = ID(v) for 

all v ∈V(G). Now, let v ∈V(H). Since G is symmetric, then for all x ∈ MD(v) we have v ∈ MD(x).Hence 

MD(x) ⋂V(H)  because v ∈ V(H). Thus by Definition (2.2.1), we get x ∈   
 (V(H) for all x ∈ MD(v) 

which implies MD(v) ⊆  
 (V(H). So, by Definition (2.2.1), we have v ∈   

 (  
 (V(H)). Therefore, 

V(H)⊆  
 (  

 (V(H)). 

(L12) since G is a symmetric graph, then MD(v) = OD(v) = ID(v) for all v ∈ V(G). Now, let v ∈   
 (V(H)) 

⋂  
 (V(K)) ⟹v ∈  

 (V(H)) ∧v ∈  
 (V(K))⟹ ∃MD(v): MD(v) ⊆V(H) ∧MD(v) ⊆V(K)⟹∃MD(v): MD(v) 

⊆V(H)⋂V(K) ⟹v ∈  
 (V(H) ⋂V(K)). Hence   

 (V(H))⋂  
 (V(K))⊆  

 (V(H) ⋂V(K)) . By using (L5) in 

Proposition (2.3.1), we have   
 (V(H) ⋂V(K))⊆  

 (V(H)) ⋂  
 (V(K)) so   

 (V(H) ⋂V(K)) =  
 (V(H)) 

⋂  
 (V(K)). 

(U10) let v ∈  
 (  

 (V(H)), then ∀MD(v), MD(v) ⋂  
 (V(H)) . Hence there exists u ∈MD(v) such that 

u ∈  
 (V(H). Since G is a symmetric graph, then u ∈ MD(v) implies v ∈ MD(u). Now since u ∈ 

  
 (V(H)) then by Definition (2.2.1), we have MD(u) ⊆V(H). But v ∈MD(u) and so v ∈V(H). 

Consequently, V(H) ⊇  
 (  

 (V(H)).  

(U12) Firsty, we need to show that   
 (V(H) ⋃V(K)) ⊆  

 (V(H)) ⋃  
 (V(K)). Now, let v ∉   

 (V(H)) 

⋃  
 (V(K))⟹ v ∉   

 (V(H))∧v ∉   
 (V(K)). Then, by Definition (2.2.1), we obtain MD(v) ⋂V(H) = 

∧MD(v) ⋂V(K) = . So, MD(v) ⋂(V(H) ⋂V(K)) =  and hence v ∉   
 (V(H) ⋃V(K)). By using (U6) in 

Proposition (2.3.1), we have   
 (V(H) ⋃V(K)) ⊇  

 (V(H)) ⋃   
 (V(H)). Therefore,   

 (V(H) ⋃V(K)) = 

  
 (V(H))⋃  

 (V(K)). 

 

Remark 2.3.13.Let G = (V(G), E(G)) be a non-empty finite symmetric graph, then the properties 

(L1),(L3),(L8),(L9),(L11),(U1),(U2),(U8),(U9),(U11) and (LU) are not true in general for every H ⊆G. 
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 The following example shows this remark. 

Example 2.3.14. Let G = (V(G), E(G)): V(G) = {v₁, v₂, v₃, v₄, v₅}, E(G) = {(v₁, v₂), (v₁, v₄), (v₂, v₁), (v₂, v₅), 

(v₃, v₃), (v₄, v₁), (v₄, v₄), (v₅, v₂), (v₅, v₅)} 

 

 

 

 

 

 

Figure 2.3.4 : Graph G given in Example 2.3.14. 

We get 

OD(v₁) = {v₂, v₄}, OD(v₂) = {v₁, v₅}, OD(v₃) =  , OD(v₄) = {v₁, v₄}, OD(v₅) = {v₂, v₅} 

Also we have 

ID(v₁) = {v₂, v₄}, ID(v₂) = {v₁, v₅}, ID(v₃) = , ID(v₄) = {v₁, v₄}, ID(v₅) = {v₂, v₅} 

Then we obtain 

MDS(v₁) = {{v₂, v₄}}, MDS(v₂) = {{v₂, v₅}}, MDS(v₃) = {}, MDS(v₄) = {{v₁, v₄}}, MDS(v₅) = {{v₂, v₅}}. 

Therefore, we have 

(L1) if H = (V(H), E(H)): V(H) = {v₁, v₂}, E(H) = {(v₁, v₂), (v₂, v₁)}, then   
 (V(H)) =  {v₃}. Therefore, 

  
 (V(H)) ⊈V(H). 

(L3) if H = (V(H), E(H)): V(H) = , E(H) = , then   
 (V(H)) =  {v₃}. Therefore,   

 () . 

(L8) if H = (V(H), E(H)): V(H) = {v₁, v₄}, E(H) = {(v₁, v₄), (v₄, v₁), (v₄, v₄)}, then   
 (V(H)) =  {v₃, v₄}, 

  
 (  

 (V(H)) = {v₃}. Therefore,   
 (V(H))   

 (  
 (V(H)). 

(L9) if H = (V(H), E(H)): V(H) = {v₃, v₅}, E(H) = {(v₅, v₅)}, then   
 (V(H)) = {v₃},   

 (  
 (V(H)) = . 

Therefore,   
 (V(H))   

 (  
 (V(H)). 

(L11) if H = (V(H), E(H)): V(H) = {v₁, v₃, v₅}, E(H) = {(v₅, v₅)}, then   
 (V(H)) = {v₂, v₃},   

 (  
 (V(H)) = {v₃}. 

Therefore,   
 (V(H)) ⊈  

 (  
 (V(H)).  

(U1) if H = (V(H), E(H)): V(H) = {v₁}, E(H) = , then   
 (V(H)) = {v₂, v₄}. Therefore, V(H)⊈  

 (V(H)). 

(U2) if H = (V(H), E(H)): V(H) = V(G), E(H) = {(v₁, v₂), (v₁, v₄), (v₂, v₁), (v₂, v₅), (v₄, v₁), (v₄, v₄), (v₅, v₂), (v₅, 

v₅)}, then   
 (V(H)) = {v₁, v₂, v₄, v₅}. Therefore,   

 (V(G))V(G). 

(U₈) if H = (V(H), E(H)): V(H) = {v₁, v₃}, E(H) = , then   
 (V(H)) = {v₂, v₄},   

 (  
 (V(H))) = {v₁, v₄, v₅}. 

Therefore,   
 (V(H))  

 (  
 (V(H))). 

(U9) if H = (V(H), E(H)): V(H) = {v₄, v₅}, E(H) = {(v₄, v₄), (v₅, v₅)}, then   
 (V(H)) = {v₁, v₂, v₄, v₅}, 

  
 (  

 (V(H))) = V(G). Therefore,   
 (V(H))   

 (  
 (V(H))). 

(U11) if H = (V(H), E(H)): V(H) = {v₃}, E(H) = ,  then   
 (V(H)) = ,   

 (  
 (V(H))) = {v₃}. Therefore, 

  
 (V(H)) ⊉  

 (  
 (V(H))). 

(LU) if H = (V(H), E(H)): V(H) = {v₂, v₃, v₄}, E(H) = {(v₄, v₄)}, then   
 (V(H)) = {v₁, v₃},   

 (V(H)) = {v₁, v₄, 

v₅}. Therefore,   
 (V(H))  

 (V(H)). 

 

Lemma 2.3.15.Let G = (V(G), E(G)) be a non-empty finite transitive  graph and MD(v) be a mixed 

degree set of a vertex v∈V(G), then for each u ∈ MD(v) there exists MD(u) such that MD(u) ⊆MD(v). 

Proof.Firsly, if MD(v) = OD(v) then we want to show that for each x ∈ OD(v) we have OD(x) ⊆OD(v). 

Now, let x ∈ OD(v) and y ∈ OD(x). Since G is a transitive graph, y ∈ OD(x) and x ∈ OD(v) then y ∈ 

OD(v). So, OD(x) ⊆OD(v) for all x ∈ OD(v). On the other hand, if MD(v) = ID(v) then we need to show 

that for each x ∈ ID(v) we get ID(x) ⊆ID(v). So, let x ∈ ID(v) and z ∈ ID(x). Since G is transitive graph 

then Gˉ¹is also transitive. Since Rˉ¹is transitive, z ∈ ID(x) and x ∈  ID(v) then z ∈ ID(v). Hence, ID(x) 

v₂ v₃ 

v₅ 
v₄ v₁ 
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⊆ID(v) for all x ∈ ID(v). Consequently, for each x ∈ MD(v) there exists MD(x) such that MD(x) ⊆ 

MD(v). 

 

Proposition 2.3.16.Let G = (V(G), E(G)) be a non-empty finite transitive graph, then the following 

properties holds for every H⊆G. 

(L11)   
 (V(H)) ⊆  

 (  
 (V(H)), 

(U11)    
 (V(H)) ⊇  

 (  
 (V(H)). 

Proof. 

(L11) let v ∈   
 (V(H)), ∃MD(v), MD(v) ⊆V(H). Now, let u ∈ MD(v) by Lemma (4.3.15), there exist 

MD(u) such that MD(u)⊆MD(v). Thus, ∃MD(u), MD(u)⊆V(H)⟹u ∈   
 (V(H)). So, MD(v)⊆  

 (V(H)). 

Therefore, ∃MD(v), MD(v) ⊆  
 (V(H)) ⟹v ∈   

 (  
 (V(H)). Hence,   

 (V(H)) ⊆  
 (  

 (V(H)). 

(U11) let v ∈   
 (  

 (V(H))⟹∀MD(v), MD(v) ⋂  
 (V(H)) ⟹ ∀ MD(v) there exists u such that u ∈ 

MD(v) and u ∈   
 (V(H)). Now, since u ∈    

 (V(H)) then for all MD(u), MD(u) ⋂V(H) since u ∈ 

MD(v), then by Lemma(4.3.15), there exists MD(u) such that MD(u)⊆MD(v). But, for all MD(u), 

MD(u)⋂V(H). Consequently, we have for all MD(v), MD(v) ⋂V(H) . Hence v ∈   
 (V(H)). 

Therefore   
 (V(H))   

 (  
 (V(H)). 

 

Remark 2.3.17.. Let G = (V(G), E(G)) be a non-empty finite transitive graph, then the properties (L1), 

(L1), (L8), (L9), (L10), (L12), (U1), (U1), (U8), (U9), (U10), (U12) and (LU) are not true in general for every H, K 

⊆G. 

 

 The following two examples illustrate this remark. 

Example 2.3.18. Let G = (V(G), E(G)): V(G) = {v₁, v₂, v₃, v₄, v₅}, E(G) = {(v₁, v₁), (v₂, v₄), (v₃, v₂),  (v₃, v₃), 

(v₃, v₄), (v₄, v₄), (v₅, v₁), (v₅, v₅)}. 

  

 

 

 

 

 

 

Figure 2.3.5 : Graph G given in Example 2.3.18. 

We get 

OD(v₁) = {v₁}, OD(v₂) = {v₄}, OD(v₃) =  {v₂, v₃, v₄}, OD(v₄) = {v₄}, OD(v₅) = {v₁, v₅} 

Also we have 

ID(v₁) = {v₁, v₅}, ID(v₂) = {v₃}, ID(v₃) = {v₃}, ID(v₄) = {v₂, v₃, v₄}, ID(v₅) = {v₅} 

Then we obtain 

MDS(v₁) = {{v₁}, {v₁, v₅}}, MDS(v₂) = {{v₄}, {v₃}}, MDS(v₃) = {{v₂, v₃, v₄}, {v₃}}, MDS(v₄) = {{v₄}, {v₂, v₃, v₄}}, 

MDS(v₅) = {{v₁, v₅}, {v₅}}. 

Example 2.3.19. Let G = (V(G), E(G)): V(G) = {v₁, v₂, v₃, v₄, v₅}, E(G) = {(v₁, v₁), (v₂, v₄), (v₂, v₅), (v₄, v₅)}.

  

 

 

 

 

v₃ v₂ 

v₅ v₄ v₁ 

v₃ v₂ 

v₅ 

v₄ 
v₁ 
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Figure 2.3.6 : Graph G given in Example 2.3.19. 

We get 

OD(v₁) = {v₁}, OD(v₂) = {v₄, v₅}, OD(v₃) =  , OD(v₄) = {v₅}, OD(v₅) =  

Also we have 

ID(v₁) = {v₁}, ID(v₂) = , ID(v₃) = , ID(v₄) = {v₂, v₃, v₄}, ID(v₅) = {v₅} 

Then we obtain 

MDS(v₁) = {{v₁}}, MDS(v₂) = {{v₂, v₄}, }, MDS(v₃) = {}, MDS(v₄) = {{v₅}, {v₂, v₃, v₄}}, MDS(v₅) = {, {v₅}}. 

Consequently, we have 

(L1) if H = (V(H), E(H)): V(H) = {v₃}, E(H) = {(v₃, v₃)}, then   
 (V(H)) =  {v₂, v₃}. Therefore,   

 (V(H)) 

⊈V(H). 

(L3) if H = (V(H), E(H)): V(H) = , E(H) = , then   
 (V(H)) =  {v₂, v₃, v₅}. Therefore,   

 (). 

(L8) if H = (V(H), E(H)): V(H) = {v₁, v₃}, E(H) = {(v₁, v₁)}, then   
 (V(H)) =  {v₁, v₂, v₃, v₅},   

 (  
 (V(H)) = 

V(G). Therefore,   
 (V(H))   

 (  
 (V(H)). 

(L9) if H = (V(H), E(H)): V(H) = {v₂, v₄}, E(H) = {(v₂, v₄)}, then   
 (V(H)) = {v₂, v₃, v₄, v₅},   

 (  
 (V(H)) = 

{v₄}. Therefore,   
 (V(H))   

 (  
 (V(H)). 

(L10) if H = (V(H), E(H)): V(H) = {v₂, v₃, v₅}, E(H) = {(v₂, v₅)}, then   
 (V(H) = {v₄},   

 (  
 (V(H)) = . 

Therefore, V(H) ⊈  
 (  

 (V(H)). 

(L12) letH = (V(H), E(H)): V(H) = {v₂, v₅}, E(H) = {(v₂, v₅)}and K = (V(K), E(K)): V(K) = {v₃, v₅}, E(K) = , then 

  
 (V(H)) = {v₂, v₃, v₄, v₅}and   

 (V(K)) = {v₂, v₃, v₄, v₅} But, H⋂K = (V(H)⋂V(K),E(H)⋂E(K)): V(H)⋂V(K) = 

{v₅}, E(H)⋂E(K) =  such that   
 (V(H) ⋂V(K))  = {v₂, v₃, v₅} and so   

 (V(H) ⋂V(K))   
 (V(H)) ⋂ 

  
 (V(H)). 

(U1) if H = (V(H), E(H)): V(H) = {v₁, v₂}, E(H) = {(v₁, v₁)}, then   
 (V(H)) = {v₁}. Therefore, V(H)⊈  

 (V(H)). 

(U2) if H = (V(H), E(H)): V(H) = V(G), E(H) = {(v₁, v₁), (v₂, v₄), (v₂, v₅), (v₄, v₅)}, then   
 (V(H)) = {v₁, v₄}. 

Therefore,   
 (V(G))V(G). 

(U₈) if H = (V(H), E(H)): V(H) = {v₂, v₃, v₅}, E(H) = {(v₂, v₅)}, then   
 (V(H)) = {v₄},   

 (  
 (V(H))) = . 

Therefore,   
 (V(H))  

 (  
 (V(H))). 

(U9) if H = (V(H), E(H)): V(H) = {v₁, v₂, v₅}, E(H) = {(v₁, v₁), (v₂, v₅)}, then   
 (V(H)) = {v₁, v₄}, 

  
 (  

 (V(H))) = {v₁, v₂, v₃, v₅}. Therefore,   
 (V(H))   

 (  
 (V(H))). 

(U10) if H = (V(H), E(H)): V(H) = {v₁, v₅}, E(H) = {(v₁, v₁)}, then   
 (V(H) = V(G),   

 (  
 (V(H)) = {v₁, v₄}. 

Therefore, V(H) ⊉  
 (  

 (V(H)).  

(U12) letH = (V(H), E(H)): V(H) = {v₁, v₅}, E(H) = {(v₁, v₁), (v₅, v₁), (v₅, v₅)}and K = (V(K), E(K)): V(K) = {v₂, 

v₃}, E(K) = {(v₃, v₂), (v₃, v₃)},then   
 (V(H)) = {v₁, v₅} and   

 (V(K)) = {v₃} But, H⋃K = 

(V(H)⋃V(K),E(H)⋃E(K)): V(H)⋃V(K) = {v₁, v₂, v₃, v₅}, E(H)⋃E(K) = {(v₁, v₁), (v₃, v₂), (v₃, v₃), (v₅, v₁), (v₅, v₅)} 

such that   
 (V(H) ⋃V(K))  = {v₁, v₂, v₃, v₅} and so   

 (V(H) ⋃V(K))   
 (V(H)) ⋃  

 (V(K)). 

(LU) if H = (V(H), E(H)): V(H) = {v₂, v₃, v₄, v₅}, E(H) = {(v₂, v₄), (v₂, v₅), (v₄, v₅)}, then   
 (V(H)) = {v₂, v₃, 

v₄, v₅},   
 (V(H)) = {v₄}. Therefore,   

 (V(H))  
 (V(H)). 

 

Proposition 2.3.20.. Let G = (V(G), E(G)) be a non-empty finite tolerance graph, then the properties 

(L1), (L3), (L10), (L12), (U1), (U2), (U10), (U12) and (LU) hold for every H, K⊆G. 

Proof.By using Propositions (2.3.9) and (2.3.12) the proof is obvious. 

 

Remark 2.3.21.Let G = (V(G), E(G)) be a non-empty finite tolerance graph, then the properties(L8), 

(L9), (L11), (U8), (U9) and (U11) are not true in general for every H⊆G. 
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 The following example shows this remark. 

Example 2.3.21. Let G = (V(G), E(G)): V(G) = {v₁, v₂, v₃, v₄, v₅}, E(G) = {(v₁, v₁), (v₁, v₂), (v₂, v₂), (v₂, v₂), 

(v₂, v₃), (v₃, v₂), (v₃, v₃), (v₄, v₄), (v₅, v₅)}. 

  

 

 

 

 

 

 

Figure 2.3.7 : Graph G given in Example 2.3.21. 

We get 

OD(v₁) = {v₁, v₂}, OD(v₂) = {v₁, v₂, v₃}, OD(v₃) =  {v₂, v₃}, OD(v₄) = {v₄}, OD(v₅) = {v₅} 

Also we have 

ID(v₁) = {v₁, v₂}, ID(v₂) = {v₁, v₂, v₃}, ID(v₃) = {v₂, v₃}, ID(v₄) = {v₄}, ID(v₅) = {v₅} 

Then we obtain 

MDS(v₁) = {{v₁, v₂}}, MDS(v₂) = {{v₁, v₂, v₃}}, MDS(v₃) = {{v₂, v₃}}, MDS(v₄) = {{v₄}}, MDS(v₅) = {{v₅}} 

Therefore, we have 

(L8) if H = (V(H), E(H)): V(H) = {v₁, v₂, v₄}, E(H) = {(v₁, v₁), (v₁, v₂), (v₂, v₁), (v₂, v₂), (v₄, v₄)}, then   
 (V(H)) 

=  {v₁, v₄},   
 (  

 (V(H)) = {v₄}. Therefore,   
 (V(H))   

 (  
 (V(H)). 

(L9) if H = (V(H), E(H)): V(H) = {v₁, v₂, v₅}, E(H) = {(v₁, v₁), (v₁, v₂), (v₂, v₁), (v₂, v₂), (v₅, v₅)}, then   
 (V(H)) 

= {v₁, v₅},   
 (  

 (V(H)) = {v₁, v₂, v₅}. Therefore,   
 (V(H))   

 (  
 (V(H)). 

(L11) if H = (V(H), E(H)): V(H) = {v₂, v₃, v₅}, E(H) = {(v₂, v₂), (v₂, v₃), (v₃, v₂), (v₃, v₃), (v₅, v₅)},then   
 (V(H)) 

= {v₃, v₅},   
 (  

 (V(H)) = {v₅}. Therefore,   
 (V(H)) ⊈  

 (  
 (V(H)).  

(U₈) if H = (V(H), E(H)): V(H) = {v₁, v₄}, E(H) = {(v₁, v₁), (v₄, v₄)}, then   
 (V(H)) = {v₁, v₂, v₄}, 

  
 (  

 (V(H))) = {v₁, v₂, v₃, v₄}. Therefore,   
 (V(H))  

 (  
 (V(H))). 

(U9) if H = (V(H), E(H)): V(H) = {v₁, v₅}, E(H) = {(v₁, v₁), (v₅, v₅)}, then   
 (V(H)) = {v₁, v₂, v₅}, 

  
 (  

 (V(H))) = {v₁, v₅}. Therefore,   
 (V(H))   

 (  
 (V(H))). 

(U11) if H = (V(H), E(H)): V(H) = {v₁, v₄, v₅}, E(H) = {(v₁, v₁), (v₄, v₄), (v₅, v₅)},  then   
 (V(H)) = {v₁, v₂, v₄}, 

  
 (  

 (V(H))) = {v₁, v₂, v₃, v₄}. Therefore,   
 (V(H)) ⊉  

 (  
 (V(H))). 

 

Proposition 2.3.23. . Let G = (V(G), E(G)) be a non-empty finite dominance graph, then the properties 

(L1), (L3), (L8), (L11), (U1), (U2), (U8), (U11) and (LU) holds for every H⊆G. 

Proof.By using Propositions (2.3.9) and (2.3.16) the proof is obvious. 

 

Remark 2.3.24. . Let G = (V(G), E(G)) be a non-empty finite dominance graph, then the properties 

(L9), (L10), (L12), (U9), (U10) and (U12) are not true in general for every H, K⊆G. 

 The following example illustrates this remark. 

 

Example 2.3.25. Let G = (V(G), E(G)): V(G) = {v₁, v₂, v₃, v₄, v₅}, E(G) = {(v₁, v₁), (v₂, v₂), (v₂, v₄), (v₂, v₅), 

(v₃, v₃), (v₄, v₄), (v₄, v₅), (v₅, v₅)}. 

  

 

 

v₃ v₂ 

v₅ 
v₄ v₁ 
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Figure 2.3.8 : Graph G given in Example 2.3.25. 

We get 

OD(v₁) = {v₁}, OD(v₂) = {v₂, v₄, v₅}, OD(v₃) =  {v₃}, OD(v₄) = {v₄, v₅}, OD(v₅) = {v₅} 

Also we have 

ID(v₁) = {v₁}, ID(v₂) = {v₂}, ID(v₃) = {v₃}, ID(v₄) = {v₂, v₄}, ID(v₅) = {v₂, v₄, v₅} 

Then we obtain 

MDS(v₁) = {{v₁}}, MDS(v₂) = {{v₂, v₄, v₅}, {v₂}}, MDS(v₃) = {{v₃}}, MDS(v₄) = {{v₄, v₅}, {v₂, v₄}}, MDS(v₅) = 

{{v₅}, {v₂, v₄, v₅}}. 

(L9) if H = (V(H), E(H)): V(H) = {v₂, v₅}, E(H) = {(v₂, v₂), (v₂, v₅), (v₅, v₅)}, then   
 (V(H)) = {v₂, v₅}, 

  
 (  

 (V(H)) = {v₂, v₄, v₅}. Therefore,   
 (V(H))   

 (  
 (V(H)). 

(L10) if H = (V(H), E(H)): V(H) = {v₃, v₄}, E(H) = {(v₃, v₃), (v₄, v₄)}, then   
 (V(H) = {v₃, v₄},   

 (  
 (V(H)) = 

{v₃}. Therefore, V(H) ⊈  
 (  

 (V(H)). 

(L12) letH = (V(H), E(H)): V(H) = {v₁, v₂, v₄}, E(H) = {(v₁, v₁), (v₂, v₂), (v₂, v₄), (v₄, v₄)}and K = (V(K), E(K)): 

V(K) = {v₁, v₄, v₅}, E(K) = {(v₁, v₁), (v₄, v₄), (v₄, v₅), (v₅, v₅)}, then   
 (V(H)) = {v₁, v₂, v₄}and   

 (V(K)) = {v₁, 

v₄, v₅} But, H⋂K = (V(H)⋂V(K),E(H)⋂E(K)): V(H)⋂V(K) = {v₁, v₄}, E(H)⋂E(K) = {(v₁, v₁), (v₄, v₄)}such that 

  
 (V(H) ⋂V(K))  = {v₁} and so   

 (V(H) ⋂V(K))   
 (V(H)) ⋂   

 (V(H)). 

(U9) if H = (V(H), E(H)): V(H) = {v₁, v₃, v₄}, E(H) = {(v₁, v₁), (v₃, v₃), (v₄, v₄)}, then   
 (V(H)) = {v₁, v₃, v₄}, 

  
 (  

 (V(H))) = {v₁, v₃}. Therefore,   
 (V(H))   

 (  
 (V(H))). 

(U10) if H = (V(H), E(H)): V(H) = {v₁, v₂, v₃, v₅}, E(H) = {(v₁, v₁), (v₂, v₂), (v₂, v₅), (v₃, v₃), (v₅, v₅)}, then 

  
 (V(H) = {v₁, v₂, v₃, v₅},   

 (  
 (V(H)) = V(G). Therefore, V(H) ⊉  

 (  
 (V(H)).  

(U12) letH = (V(H), E(H)): V(H) = {v₂}, E(H) = {(v₂, v₂)}and K = (V(K), E(K)): V(K) = {v₅}, E(K) = {(v₅, v₅)},then 

  
 (V(H)) = {v₂} and   

 (V(K)) = {v₅} But, H⋃K = (V(H)⋃V(K),E(H)⋃E(K)): V(H)⋃V(K) = {v₂, v₅}, 

E(H)⋃E(K) = {(v₂, v₂), (v₂, v₅), (v₅, v₅)} such that   
 (V(H) ⋃V(K))  = {v₂, v₄, v₅} and so   

 (V(H) ⋃V(K)) 

  
 (V(H)) ⋃  

 (V(K)). 

 

Proposition 2.3.26.. Let G = (V(G), E(G)) be a non-empty finite equivalence graph, then the 

properties (L1), (L3), (L8), (L9), (L10), (L11), (L12), (U1), (U2), (U8), (U9), (U10), (U11), (U12) and (LU) holds for 

every H, K⊆G. 

Proof.By using Propositions (2.3.9), (2.3.12) and (2.3.16) the proof is obvious. 

 

Table (2.3.1) 

Prop. Arbt. Ser.1 Ser.2 Refl. Sym. Trans. Tole. Dom. Eque. 

L1    ∗   ∗ ∗ ∗ 

L2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 

L3  ∗ ∗ ∗   ∗ ∗ ∗ 

L4 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 

v₃ v₂ 

v₅ 
v₄ 

v₁ 
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L5 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 

L6 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 

L7 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 

L8        ∗ ∗ 

L9         ∗ 

L10     ∗  ∗  ∗ 

L11      ∗  ∗ ∗ 

L12    ∗ ∗  ∗  ∗ 

U1    ∗   ∗ ∗ ∗ 

U2  ∗ ∗ ∗   ∗ ∗ ∗ 

U3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 

U4 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 

U5 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 

U6 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 

U7 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 

U8        ∗ ∗ 

U9         ∗ 

U10     ∗  ∗  ∗ 

U11      ∗  ∗ ∗ 

U12     ∗  ∗  ∗ 

LU    ∗   ∗ ∗ ∗ 

 

 In Table(2.3.1), we summarize the previous results for the properties of approximation 

operators  
  and   

 when the graph G is arbitrary, serial with V(G) ⋃v ∈V(G)OD(v),serial with V(G) = 

⋃v ∈V(G)OD(v), reflexive, symmetric, transitive, tolerance, dominance and equivalence respectively. 

A star (∗) indicate that property is satisfies. The first column contains the list of properties. The next 

ninth columns assign the properties which are satisfied for the above mention Kinds of G. Also, in 

table (2.3.1), ser.1 mean serial with V(G) ⋃v ∈V(G)OD(v) and ser.2 mean serial with V(G) = ⋃v 

∈V(G)OD(v). 
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