The aim of this paper is to generate topological structure on the power set of vertices of digraphs using new definition which is Gm-closure operator on out-linked of digraphs. Properties of this topological structure are studied and several examples are given. Also we give some new generalizations of some definitions in digraphs to the some known definitions in topology which are Ropen subgraph, α-open subgraph, pre-open subgraph, and β-open subgraph. Furthermore, we define and study the accuracy of these new generalizations on subgraps and paths.
Despite ample research on soft linear spaces, there are many other concepts that can be studied. We introduced in this paper several new concepts related to the soft operators, such as the invertible operator. We investigated some properties of this kind of operators and defined the spectrum of soft linear operator along with a number of concepts related with this definition; the concepts of eigenvalue, eigenvector, eigenspace are defined. Finally the spectrum of the soft linear operator was divided into three disjoint parts.
In this paper, we present a concept of nC- symmetric operator as follows: Let A be a bounded linear operator on separable complex Hilbert space , the operator A is said to be nC-symmetric if there exists a positive number n (n such that CAn = A*ⁿ C (An = C A*ⁿ C). We provide an example and study the basic properties of this class of operators. Finally, we attempt to describe the relation between nC-symmetric operator and some other operators such as Fredholm and self-adjoint operators.
In this paper we obtain some statistical approximation results for a general class of maxproduct operators including the paused linear positive operators.
The primary aim of this paper, is to introduce the rough probability from topological view. We used the Gm-topological spaces which result from the digraph on the stochastic approximation spaces to upper and lower distribution functions, the upper and lower mathematical expectations, the upper and lower variances, the upper and lower standard deviation and the upper and lower r th moment. Different levels for those concepts are introduced, also we introduced some results based upon those concepts.
In this paper, the concept of soft closure spaces is defined and studied its basic properties. We show that the concept soft closure spaces are a generalization to the concept of
A new type of the connected domination parameters called tadpole domination number of a graph is introduced. Tadpole domination number for some standard graphs is determined, and some bounds for this number are obtained. Additionally, a new graph, finite, simple, undirected and connected, is introduced named weaver graph. Tadpole domination is calculated for this graph with other families of graphs.
The aim of this article is to introduce a new definition of domination number in graphs called hn-domination number denoted by . This paper presents some properties which show the concepts of connected and independent hn-domination. Furthermore, some bounds of these parameters are determined, specifically, the impact on hn-domination parameter is studied thoroughly in this paper when a graph is modified by deleting or adding a vertex or deleting an edge.
Soft closure spaces are a new structure that was introduced very recently. These new spaces are based on the notion of soft closure operators. This work aims to provide applications of soft closure operators. We introduce the concept of soft continuous mappings and soft closed (resp. open) mappings, support them with examples, and investigate some of their properties.
The relation between faithful, finitely generated, separated acts and the one-to-one operators was investigated, and the associated S-act of coshT and its attributes have been examined. In this paper, we proved for any bounded Linear operators T, VcoshT is faithful and separated S-act, and if a Banach space V is finite-dimensional, VcoshT is infinitely generated.
Consider the (p,q) simple connected graph . The sum absolute values of the spectrum of quotient matrix of a graph make up the graph's quotient energy. The objective of this study is to examine the quotient energy of identity graphs and zero-divisor graphs of commutative rings using group theory, graph theory, and applications. In this study, the identity graphs derived from the group and a few classes of zero-divisor graphs of the commutative ring R are examined.