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Abstract: The aim of this paper is to generate topological structure on the power set of vertices of 
digraphs using new definition which is Gm-closure operator on out-linked of digraphs. Properties of this 
topological structure are studied and several examples are given. Also we give some new 
generalizations of some definitions in digraphs to the some known definitions in topology which are R-
open subgraph, α-open subgraph, pre-open subgraph, and β-open subgraph. Furthermore, we define 
and study the accuracy of these new generalizations on subgraps and paths. 
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INTRODUCTION 

 
 The use of topological ideas to explore various aspects of graph theory, and vice versa, is a fruitful area of 
research. There are links with other areas of mathematics, such as design theory and geometry, and increasingly 
with such areas as computer networks where symmetry is an important feature. This paper is part of an on-going 
project in which we seek to explore how standard facts about topological spaces in finite graphs can best be 
generalized to infinite graphs. The basic idea is that such structure can get topological closure spaces by using 
closure operators on graphs. 
 A graph (resp., directed graph or digraph) (R.J. Wilson, 1996), G=(V(G), E(G)) consists of a vertex set 
V(G) and an edge set E(G) of unordered (resp., ordered) pairs of elements of V(G). To avoid ambiguities, we 
assume that the vertex and edge sets are disjoint. We say that two vertices v and w of a graph (resp., digraph) G 
are adjacent if there is an edge of the form vw (rsep., 

vw  or 


wv ) joining them, and the vertices v and w are 
then incident with such an edge. A subgraph (W.D. Wallis, 2007), of a graph G is a graph, each of whose 
vertices belong to V(G) and each of whose edges belong to E(G). The degree of a vertex v of G is the number of 
edges incident with v, and written deg(v). A vertex of degree zero is an isolated vertex. In digraph, the out-
degree (J. Bondy and D.S. Murty, 1992), of a vertex v of G is the number of edges of the form



vw , and denoted 
by D+(v), similarly, the in-degree of a vertex v of G is the number of edges of the form 

wv , and denoted by D-

(v). A vertex of out-degree and in-degree are zero is an isolated vertex. A graph whose edge-set is empty is a 
null graph; we denote the null graph on n vertices by Nn. A walk (R. Diestel, 2005) is a 'way of getting from one 
vertex to another', and consists of a sequence of edges, one following after another. A walk in which no vertex 
appears more than once is called a path. For other notions or notations in topology not defined here we follow 
closely (R. Englking, 1989; S. Willard, 1970). 
 
Closure Operators on Graphs: 
  In this section, we introduce and study the concepts of closure operators on digraphs, several known 
topological property on the obtained Gm-closure spaces are studies, and we introduce the concept of Gm-dense 
subgraphs in Gm-closure spaces. 
 
Definition 2.1: 
 Let G=(V(G), E(G)) be a digraph, P(V(G)) its power set of all subgraphs of  G and ClG:P(V(G))→P(V(G)) 
is a mapping associating with each subgraph H=(V(H), E(H)) a subgraph ClG(V(H))V(G) called the closure 
subgraph of H such that: ClG(V(H))=V(H) {vV(G)\V(H); 

hv E(G) for all hV(H)} 
 The operation ClG is called graph closure operator and the pair (V(G), CG) is called G-closure space, where 
CG(V(G)) is the family of elements of ClG. The dual of the graph closure operator ClG is the graph interior 
operator IntG:P(V(G))→P(V(G)) defined by IntG(V(H))=V(G)\ ClG(V(G)\V(H)) for all subgraph HG. A 
family of elements of IntG is called interior subgraph of H and denoted by OG(V(G)). Clear that (V(G), OG) is a 
topological space. Then the domain of ClG is equal to the domain of IntG and also ClG(V(H))=V(G)\ 
IntG(V(G)\V(H)). A subgraph H of G-closure space (V(G), CG) is called closed subgraph if ClG(V(H))=V(H). It 
is called open subgraph if its complement is closed subgraph, i.e., ClG(V(G)\V(H))=V(G)\V(H), or equivalently 
IntG(V(H))=V(H). 
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Example 2.1:                                                                    a                                   d 
Let G=(V(G), E(G)) be a digraph such that:  
V(G)={a, b, c, d}, 
E(G)={(a, b), (a, d), (c, b), (c, d)}.                                   b                               c 
 

V(H) ClG(V(H)) V(H) ClG(V(H)) 
V(G) V(G) {a, d} {a, b, d} 
φ φ {b, c} {b, c, d} 

{a} {a, b, d} {b, d} {b, d} 
{b} {b} {c, d} { b, c, d} 
{c} {b, c, d} {a, b, c} V(G) 
{d} {d} {a, b, d} {a, b, d} 

{a, b} {a, b, d} {a, c, d} V(G) 
{a, c} V(G) {b, c, d} {b, c, d} 

 
CG(V(G))={V(G), φ, {b}, {d}, {b, d}, {a, b, d}, {b, c, d}}, 
OG(V(G))={V(G),  φ , {a}, {c}, {a, c}, {a, b, c}, {a, c, d}}. 
 
 We obtain a new definition to construct topological closure spaces from G-closure spaces by redefine graph 
closure operator on the resultant subgraphs as a domain of the graph closure operator and stop when the operator 
transfers each subgraph to itself. 
 
Definition 2.2:     
 Let G=(V(G), E(G)) be a digraph and ClGm:P(V(G))→P(V(G)) an operator such that: 
(a) It is called Gm-closure operator if ClGm(V(H))=ClG(ClG(… ClG(V(H)))). m-times, for every subgraph HG, 
(b) it is called Gm-topological closure operator if ClGm+1(V(H)) =ClGm(V(H)) for all subgraph HG. 
The space (V(G), CGm) is called Gm-closure space. 
 
Example 2.2:                                                                               a                                     d 
 Let G=(V(G), E(G)) be a digraph such that: 
V(G)={a, b, c, d}, 
E(G)={(a, c), (b, a) , (b, c) , (c, d) , (d, a)}.                                b                                 c 
 

V(H) ClG(V(H)) ClG2(V(H)) V(H) ClG(V(H)) ClG2(V(H)) 
V(G) V(G) V(G) {a, d} {a, c, d} {a, c, d} 
φ φ φ {b, c} V(G) V(G) 

{a} {a, c} {a, c, d} {b, d} V(G) V(G) 
{b} {a, b, c} V(G) {c, d} {a, c, d} {a, c, d} 
{c} {c, d} {a, c,d} {a, b, c} V(G) V(G) 
{d} {a, d} {a, c, d} {a, b, d} V(G) V(G) 

{a, b} {a, b, c} V(G) {a, c, d} {a, c, d} {a, c, d} 
{a, c} {a, c, d} {a, c, d} {b, c, d} V(G) V(G) 

 
CG2(V(G))={V(G), φ, {a, c, d}}, 
OG2(V(G))={V(G), φ, {b}}. 
 
Proposition 2.1: 
 Let G=(V(G), E(G)) be a digraph, and (V(G), CGm) be Gm-closure space. If H=(V(H), E(H)), K=(V(K), 
E(K)) are two subgraphs of G such that HKG, then ClGm(V(H))ClGm(V(K)), and 
IntGm(V(H)) IntGm(V(K)). 
Proof: Let xClGm(V(H)) 

 xV(H) {vV(G)\V(H);


hv   E(G) for all hV(H)} 

 xV(H) or {vV(G)\V(H);


hv E(G) for all hV(H)} 

 xV(H) or   hV(H);


hxE(G), Since HK 

 xV(K) or  hV(K) 


hxE(G) 

 xV(K) or {vV(G)\V(K);


hv   E(G) for all hV(K)} 

 xV(K) {vV(G)\V(K);


hv E(G) for all hV(K)} 



Aust. J. Basic & Appl. Sci., 5(11): 1856-1864, 2011 

1858 

 xClGm(V(K)). Hence ClGm(V(H))ClGm(V(K)). 
Now, let xIntGm(V(H))=V(G)\ClGm(V(G)\V(H)) xClGm(V(G)\V(H)), since V(H)  V(K)   V(G)\V(K) 
  V(G)\V(H)   ClGm(V(G)\V(K))   ClGm(V(G)\V(H)). So, xClGm(V(G)\V(K))   
xV(G)\ClGm(V(G)\V(K))   xIntGm(V(K)). Hence, IntGm(V(H)) IntGm(V(K)). 
 
Proposition 2.2: 
 Let G=(V(G), E(G)) be a digraph, (V(G), CGm) be Gm-closure space, and H=(V(H), E(H)), K=(V(K), E(K)) 
are two subgraphs of G, then  
(a) ClGm(V(H) V(K))=ClGm(V(H)) ClGm(V(K)). 
(b) IntGm(V(H)∩V(K))=IntGm(V(H))∩IntGm(V(K)). 
Proof: (a) Let xClGm(V(H)V(K)) 

 x(V(H)V(K)) {vV(G)\(V(H)V(K));


gv E(G) for all g(V(H)V(K)) 

 x(V(H) V(K)) or x{vV(G)\(V(H) V(K));


gvE(G)for all 
     g(V(H)V(K)) 

 (x(V(H) or xV(K)) or ( g(V(H)V(K));


xgE(G)) 

 (xV(H) or xV(K)) or ( gV(H);


xg  E(G) or ( gV(K));


xgE(G)) 

 (xV(H) or   g(V(H);


xgE(G) or (xV(K) or  gV(K);


xgE(G)) 

 xV(H) or x{vV(G)\V(H);


gvE(G) for all gV(H)} 

 or xV(K) or x{vV(G)\V(K);


gvE(G) for all gV(K)} 

 xV(H) {vV(G)\V(H);


gvE(G) for all gV(H)} 

 or xV(K) {vV(G)\V(K);


gvE(G) for all gV(K)} 
 xClGm(V(H)) or xClGm(V(K)) 
 x  (ClGm(V(H)  ClGm(V(K)). 
(b) IntGm(V(H)∩V(K))=V(G)\ ClGm(V(G)\V(H)∩V(K)) 
=V(G)\ ClGm[(V(G)\V(H)) ((V(G)\V(K))] 
=V(G)\[ClGm(V(G)\V(H)] [ClGm(V(G)\V(K))] 
=[V(G)\ ClGm(V(G)\V(H)]∩[V(G)\ClGm(V(G)\V(K))] 
=IntGm(V(H))∩IntGm(V(K)). 
 
Proposition 2.3: 
 Let G=(V(G), E(G)) be a digraph, (V(G), CGm) be Gm-closure space, and H=(V(H), E(H)), K=(V(K), E(K)) 
be two subgraphs of G, then  
(a) ClGm(V(H)∩V(K))ClGm(V(H))∩ClGm(V(K)), and 
(b) IntGm(V(H)) IntGm(V(K)) IntGm(V(H)V(K)). 
Proof: (a) Since (V(H)∩V(K))V(H) and (V(H)∩V(K))V(K) 
ClGm(V(H)∩V(K))ClGm(V(H)) and ClGm(V(H)∩V(K))ClGm(V(K)) 
ClGm(V(H)∩V(K))ClGm(V(H))∩ClGm(V(K)). 
(b) Since V(H) (V(H)V(K)) and V(K) (V(H)V(K)) 
 IntGm(V(H)) IntGm(V(H)V(K)) and IntGm(V(K)) IntGm(V(H)V(K)) 
 IntGm(V(H)) IntGm(V(K)) IntGm(V(H)V(K)). 
 
Remark 2.1: 
 The converse of proposition (2.3) above need not be true in general, as the following example shows. 
 
Example 2.3:  
 Consider the digraph on example (2.1) 
(a)  Let H=(V(H), E(H)); V(H)={a, b}, E(H)={(a, b)} 
 K=(V(K), E(K)); V(K)={b, c}, E(K)={(c, b)} 
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Then, ClG(V(H))∩ClG(V(K))={a, b, d}∩{b, c, d}={b, d} 
and ClG(V(H)∩V(K)=ClG({b})={b}, but {b, d} {b}. 
(b)  Let H=(V(H), E(H)); V(H)={a, b, d}, E(H)={(a, b), (a, d)} 
K=(V(K), E(K)); V(K)={b, c, d}, E(K)={(c, b), (c, d)} 
 Then, IntG(V(H) V(K))=IntG(V(G))=V(G) 
and IntG(V(H)) IntG(V(K))={a} {c}={a, c}, but V(G)  {a, c}. 
 
Proposition 2.4: 
 Let G=(V(G), E(G)) be a digraph, (V(G), CGm) be Gm-closure space, and H=(V(H), E(H)) be a subgraphs of 
G, then ClGm(V(H))=V(H) if 
(a) All vertices of H are isolated; or 
(b) For all vertex vV(H), we have D-(v) ≥ 1 and D+(v) =0. 
Proof: Clear. 
 Now, we introduce the definition of Gm-dense of subgraph in Gm-closure space as follows. 
 
Definition 2.3: 
 Let G=(V(G),E(G)) be a digraph, and (V(G), CGm) be Gm-closure space. A subgraph H=(V(H), E(H)) is 
called Gm-dense in G iff ClGm(V(H))=V(G). 
 
Example 2.4: 
 In example (2.1) the set of all G-dense subgraph is 
{{a, c}, {a, b, c}, {a, c, d}} since 
ClG({a, c})=V(G), ClG({a, b, c})=V(G), ClG({a, c, d})=V(G). 
 In example (2.2) the set of all G2-dense subgraph is 
{{b}, {a, b}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {b, c, d}} since 
ClG2({b})=V(G), ClG2({a,b})=V(G), ClG2({b,c})=V(G), ClG2({b, d})=V(G), ClG2({a, b, c}) =V(G), ClG2({a, b, 
d})=V(G), ClG2({b, c, d})=V(G). 
 We give three conditions which are equivalent to saying a subgraph H=(V(H), E(H)) of a digraph G=(V(G), 
E(G)) is Gm-dense in the Gm-closure space (V(G), CGm). 
 
Theorem 2.1: 
 Let G=(V(G), E(G)) be a digraph, and H=(V(H), E(H)) be a subgraph of Gm-closure space (V(G), CGm). 
Then the following four conditions are equivalent: 
(a) The subgraph H is Gm-dense in G, 
(b) If K=(V(K), E(K)) any closed subgraph of G and HK, then K=G, 
(c) For each vertex vV(G), every open subgraph in G containing v has a nonempty intersection with H, 
(d) IntGm(V(G)\V(H))= φ.  
Proof: (a) (b). From (a), we know ClGm(V(H))=V(G). Now let K be a closed subgraph of G such that HK. 
Since K is a closed subgraph, we have V(G)=ClGm(V(H))ClGm(V(K)) =V(K). Hence K=G. 
(b) (c). Let vV(G), and O be a nonempty open subgraph in G containing v. Assume that V(O)∩V(H)=φ, 
then V(H)V(G)\V(O). The fact that V(G)\V(O) is a closed subgraph in G allows us to use (b) infer that 
V(G)\V(O)=V(G). But, on the other hand, V(O) φ implies V(G)\V(O) V(G). This contradiction means that 
our assumption is false, so that V(O)∩V(H) φ. 
(c) (d). Assume IntGm(V(G)\V(H)) φ. Then IntGm(V(G)\V(H)) is a nonempty set which is open subgraph. 
However, (V(G)\V(H))∩V(H)=φ and since IntGm(V(G)\V(H))V(G)\V(H), we have 
IntGm(V(G)\V(H))∩V(H)=φ. This contradiction (c) and means IntGm(V(G)\V(H))=φ. 
(d) (a). By definition, ClGm(V(H))=V(G)\IntGm(V(G)\V(H))=V(G)\φ= V(G). Hence H is Gm-dense in G. 
 
(R, α, pre, β)-Open Subgraphs: 
 In this section, we introduce and study (R, α, pre, β)-open subgraphs, and we defined and study the 
accuracy (resp., i-accuracy, ij-accuracy); i,j{R, α, pre, β} of subgraphs and paths in Gm-closure spaces. 
 By a similar way of definitions of regular open set (M. Stone, 1937), α-open set (O. Njastad, 1956), pre-
open set (A.S. Mashhour, et al., 1982) and β-open set (M.E. Abd El-Monsef, et al., 1983) (=semi-pre-open set 
(D. Andrijevic, 1986)), we introduce the following definitions: 
 
Definition 3.1: 
 Let G=(V(G), E(G)) be a digraph and (V(G), CGm) its Gm-closure space. 
(a)An open subgraph H=(V(H), E(H)) in (V(G), CGm) is called regular open subgraph (briefly R-open subgraph) 
if V(H)=IntGm(ClGm(V(H))), the complement of R-open subgraph is called R-closed subgraph. The R-closure 
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subgraph of H is R
GmCl (V(H))=∩{V(F); V(F) is R-closed subgraph, V(H)V(F)}, and 

R
GmInt (V(H))=V(G)\ R

GmCl (V(G)\V(H)). 

 The family of all R-open subgraph (resp., R-closed subgraph) of (V(G), CGm) is denoted by O R
Gm (V(G)) 

(resp., C R
Gm (V(G))). 

 A subgraph  H=(V(H), E(H)) in (V(G), CGm) is called 
(b) α-open subgraph if V(H) IntGm(ClGm(IntGm(V(H)))), the complement of α-open subgraph is called α-closed 

subgraph. The α-closure subgraph of H is 
GmCl (V(H))=∩{V(F); V(F) is α-closed subgraph, V(H)V(F)}, and 


GmInt (V(H))=V(G)\ 

GmCl (V(G)\V(H)). 

 The family of all α-open subgraph (resp., α-closed subgraph) of (V(G), CGm) is denoted by O 
Gm (V(G)) 

(resp., C 
Gm (V(G))). Clear that (V(G), O 

Gm ) is topological space. 

(c) pre-open subgraph if V(H) IntGm(ClGm(V(H))), the complement of pre-open subgraph is called pre-closed 

subgraph. The pre-closure subgraph of H is ePr
GmCl (V(H))=∩{V(F); V(F) is pre-closed subgraph, V(H)V(F)}, 

and ePr
GmInt (V(H))=V(G)\ ePr

GmCl (V(G)\V(H)). 

 The family of all pre-open subgraph (resp., pre-closed subgraph) of (V(G), CGm) is denoted by O ePr
Gm (V(G)) 

(resp., C ePr
Gm (V(G))). 

(d) β-open subgraph if V(H)ClGm(IntGm(ClGm(V(H)))), the complement of β-open subgraph is called β-closed 

subgraph. The β-closure subgraph of H is 
GmCl (V(H))=∩{V(F); V(F) is β-closed subgraph, V(H)V(F)}, and 


GmInt (V(H))=V(G)\ 

GmCl (V(G)\V(H)). 

 The family of all β-open subgraph (resp., β-closed subgraph) of (V(G), CGm) is denoted by  O 
Gm (V(G)) 

(resp., C 
Gm (V(G))). 

 
Example 3.1: 
 Consider the digraph in example (2.1), then we have 

O R
Gm (V(G))={V(G), φ, {a}, {c}}, 

C R
Gm (V(G))={V(G), φ, {a, b, d}, {b, c, d}}, 

O 
Gm (V(G))={V(G), φ, {a}, {c}, {a, c}, {a, b, c}, {a, c, d}}, 

C 
Gm (V(G))={V(G), φ, {b}, {d}, {b, d}, {a, b, d}, {b, c, d}}, 

O ePr
Gm (V(G))={V(G), φ, {a}, {c}, {a, c}, {a, b, c}, {a, c, d}}, 

C ePr
Gm (V(G))={V(G), φ, {b}, {d}, {b, d}, {a, b, d}, {b, c, d}}, 

O 
Gm (V(G))={V(G), φ, {a}, {c}, {a, b}, {a, c}, {a, d}, {b, c}, {c, d}, 

                      {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}}, and 

C 
Gm (V(G))={V(G), φ, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, c}, {b, d}, 

                      {c, d}, {a, b, d}, {b, c, d}}. 
 
Example 3.2: 
 Consider the digraph in example (2.2), then we have 

O R
Gm (V(G))={V(G), φ}, 

C R
Gm (V(G))={V(G), φ}, 

O 
Gm (V(G))={V(G), φ,{b},{a, b},{b,c},{b,d},{a, b, c},{a, b, d},{b, c, d}}, 

C 
Gm (V(G))={V(G), φ, {a}, {c}, {d}, {a, c}, {a, d}, {c, d}, {a, c, d}}, 

O ePr
Gm (V(G))={V(G), φ,{b},{a,b},{b,c},{b, d},{a, b, c},{a, b, d},{b, c, d}}, 
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C ePr
Gm (V(G))={V(G), φ, {a}, {c}, {d}, {a, c}, {a, d}, {c, d}, {a, c, d}}, 

O 
Gm (V(G))={V(G), φ,{b},{a,b},{b,c},{b, d},{a, b, c},{a, b, d},{b, c, d}}, and 

C 
Gm (V(G))={V(G), φ, {a}, {c}, {d}, {a, c}, {a, d}, {c, d}, {a, c, d}}. 

 
Proposition 3.1: 
 Let G=(V(G), E(G)) be a digraph, and (V(G), CGm) be Gm-closure space, then the following statements are 
true. 

(a) O R
Gm (V(G))OGm(V(G))O 

Gm (V(G))O ePr
Gm (V(G)O 

Gm (V(G)). 

(b) C R
Gm (V(G))CGm(V(G))C 

Gm (V(G))C ePr
Gm (V(G))C 

Gm (V(G)). 

Proof: (a) 

(i) By definition of R-open subgraph, we have O R
Gm (V(G))OGm(V(G)). 

(ii) Let H=(V(H), E(H)) be open subgraph, implies V(H)=IntGm(V(H)), but IntGm(V(H))ClGm(IntGm(V(H))), so 
V(H)ClGm(IntGm(V(H))) and IntGm(V(H))  IntGm(ClGm(IntGm(V(H)))). Therefore 
V(H) IntGm(ClGm(IntGm(V(H)))), and H is α-open subgraph. 
(iii) Let H=(V(H), E(H)) be α-open subgraph, then V(H) IntGm(ClGm(IntGm(V(H)))), since 
IntGm(V(H))V(H), this implies  IntGm(ClGm(IntGm(V(H)))  IntGm(ClGm(V(H))). Hence 
V(H) IntGm(ClGm(V(H))). Therefore H is pre-open subgraph. 
(iv) Let H=(V(H), E(H)) be pre-open subgraph, then V(H) IntGm(ClGm(V(H))). This implies but 
ClGm(V(H))ClGm(IntGm(ClGm(V(H))))), implies V(H)  ClGm(IntGm(ClGm(V(H)))). Which means H is β-open 
subgraph. 
(b) Clear. 
 
Remark 3.1: 
 In general the converse of proposition (3.1) above need not be true as the following example shows. 
 
Example 3.3: 
(a) In example (3.1) the subgraph H=(V(H), E(H)); V(H)={a, b, d}, E(H)={(a, b), (a, d)} is open subgraph but 
not R-open subgraph. 
(b) In example (3.2) the subgraph H=(V(H), E(H)); V(H)={a, b, c}, E(H)={(a, c), (b, a), (b, c)} is α-open 
subgraph but not open subgraph.                                                         a                                d    
(c) Consider the digraph G=(V(G), E(G)) where 
CG(V(G))={V(G), φ, {c}, {c, d}, {a, b, c}}, 
O(V(G))={V(G), φ, {d}, {a, b}, {a, b, d}}, 

O 
G (V(G))={V(G), φ,{d},{a, b},{a, b, d}} and                               b                                     c 

O ePr
G (V(G))={V(G), φ,{a},{b},{d},{a, b},{a, d},{b, d},{a, b, d}, 

                      {a, c, d}, {b, c, d}}. 
 The subgraph H=(V(H), E(H)); V(H)={a, c, d}, E(H)={(a, b), (a, c),  
(d, c)} is pre-open subgraph but not α-open subgraph. 
(d)  In example (3.1) the subgraph H=(V(H), E(H)); V(H)={a, d},  E(H)={(a,   d)} is β-open subgraph but not 
pre-open subgraph. 
 If the digraph represente the world and the vertices represente the countries in the world and the economy 
of the country figure on trade. If the product of the country is increasing (IntGm) and the importation is 
decreasing (ClGm), then the country has strong economy (accuracy) and vice versa. So if there is a link which 
conveys product from country a to country b the valuation (accuracy= Gm(V(H))) where H is subgraph 

(country or countries) in the digraph G (world), corresponds to the rate of partnership economy of the country or 
countries in the world. Hence we introduce the definitions of accuracy, i-accuracy, and ij-accuracy of subgraph 
H; i,j{R, α, pre, β}. 
 
Definition 3.2: 
 Let G=(V(G), E(G)) be a digraph, (V(G), CGm) be Gm-closure space, and H=(V(H), E(H)) be a subgraphs of 
G=(V(G), E(G)), then 

 The accuracy of H is defined by  Gm(V(H)))=
|))H(V(Cl|

|))H(V(Int|

Gm

Gm  . 
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 The i-accuracy of H is defined by 
|))H(V(Cl|

|))H(V(Int|
))H(V( i

Gm

i
Gmi

Gm   and 

                                                                       i{R, α, pre, β}. 

 The ij-accuracy of H is defined by 
|))H(V(Cl|

|))H(V(Int|
))H(V(

j
Gm

i
Gmij

Gm    and 

                                                                      i,j{R, α, pre, β}. 
 

 We introduce an example to illustrate and clarifies the accuracy and i-accuracy i{R, α, pre, β} for any 
subgraph H in a digraph G as follows. 
 
Example 3.4: 
 Consider the digraph in examples (2.1) and (3.1). The accuracy (resp., i-accuracy) of any subgraph is: 
 

subgrapg R
Gm (H) Gm (H) 

Gm (H) 
ePr

Gm (H) 
Gm (H) 

V(G) 1 1 1 1 1 
φ 0 0 0 0 0 

{a} 1/3 1/3 1/3 1/3 1 
{b} 0 0 0 0 0 
{c} 1/3 1/3 1/3 1/3 1 
{d} 0 0 0 0 0 

{a, b} 0 1/3 1/3 1/3 1 
{a, c} 0 1/2 1/2 1/2 1/2 
{a, d} 0 1/3 1/3 1/3 1 
{b, c} 0 1/3 1/3 1/3 1 
{b, d} 0 0 0 0 0 
{c, d} 0 1/3 1/3 1/3 1 

{a, b, c} 0 3/4 3/4 3/4 3/4 
{a, b, d} 0 1/3 1/3 1/3 1 
{a, c, d} 0 3/4 3/4 3/4 3/4 
{b, c, d} 0 1/3 1/3 1/3 1 

 
Proposition 3.2: 
 Let G=(V(G), E(G)) be a digraph, (V(G), CGm) be Gm-closure space, and H=(V(H), E(H)) a subgraph of G, 

then R
Gm (V(H)) ≤ Gm (V(H)) ≤ Gm (V(H)) ≤ ePr

Gm (V(H)) ≤ Gm (V(H)). 

Proof: It is clear from proposition (3.1). 
 
Proposition 3.3: 
 Let G=(V(G), E(G)) be a digraph, (V(G), CGm) be Gm-closure space, and N1 be a null subgraph of G 

containing one vertex, then Gm (V(N1))=1 

Proof: Let N1 be a null subgraph of G such that V(N1)={v}, E(N1)=φ. By proposition (2.4(i)) 
ClGm(V(N1))=V(N1)={v}, and IntGm(V(N1)) =V(G)\ClGm(V(G)\V(N1))=V(G)\ClGm(V(G)\{v}). Since v is an 
isolated vertex, then D+(v)=D-(v)=0, so ClGm(V(G)\{v})=V(G)\{v}, and IntGm(V(N1))=V(G)\(V(G)\{v})= 

{v}=V(N1). Hence Gm (V(N1))=1. 

 
Corollary 3.1: 
 Let G=(V(G), E(G)) be a digraph, (V(G), CGm) be Gm-closure space, and Nn be a null subgraph of G such 
that |V(Nn)| = n ≥ 1, then 

R
Gm (V(Nn))= Gm (V(Nn))=

Gm (V(Nn))=
ePr

Gm (V(Nn))=
Gm (V(Nn))=1. 

 
 We introduce an example to illustrate and clarifies the ij-accuracy i, j{R, α, pre, β} for any subgraph H in 
a digraph G. 
 
Example 3.5: 
 Consider the digraph in examples (2.1) and (3.1). The ij-accuracy; i,j{R, O, α, pre, β} where OO(V(G)) 
of any subgraph is: 
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subgraph RO
Gm  

R
Gm  

ePrR
Gm  

R
Gm  

OR
Gm  

O
Gm  

ePrO
Gm  

O
Gm  

R
Gm
  

O
Gm
  

V(G) 1 1 1 1 1 1 1 1 1 1 
φ 0 0 0 0 0 0 0 0 0 0 

{a} 1/3 1/3 1/3 1 1/3 1/3 1/3 1 1/3 1/3 
{b} 0 0 0 0 0 0 0 0 0 0 
{c} 1/3 1/3 1/3 1 1/3 1/3 1/3 1 1/3 1/3 
{d} 0 0 0 0 0 0 0 0 0 0 

{a, b} 1/3 1/3 1/3 1/2 1/3 1/3 1/3 1/2 1/3 1/3 
{a, c} 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 
{a, d} 1/3 1/3 1/3 1/2 1/3 1/3 1/3 1/2 1/3 1/3 
{b, c} 1/3 1/3 1/3 1/2 1/3 1/3 1/3 1/2 1/3 1/3 
{b, d} 0 0 0 0 0 0 0 0 0 0 
{c, d} 1/3 1/3 1/3 1/2 1/3 1/3 1/3 1/2 1/3 1/3 

{a, b, c} 1/2 1/2 1/2 1/2 3/4 3/4 3/4 3/4 3/4 3/4 
{a, b, d} 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 
{a, c, d} 1/2 1/2 1/2 1/2 3/4 1/2 1/2 3/4 3/4 3/4 
{b, c, d} 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 

 
subgarph ePr

Gm
  

Gm  
eRPr

Gm  
eOPr

Gm  
 ePr

Gm  
 ePr

Gm  
R

Gm
  

O
Gm
  

Gm  
ePr

Gm
  

V(G) 1 1 1 1 1 1 1 1 1 1 
φ 0 0 0 0 0 0 0 0 0 0 

{a} 1/3 1 1/3 1/3 1/3 1 1/3 1/3 1/3 1/3 
{b} 0 0 0 0 0 0 0 0 0 0 
{c} 1/3 1 1/3 1/3 1/3 1 1/3 1/3 1/3 1/3 
{d} 0 0 0 0 0 0 0 0 0 0 

{a, b} 1/3 1/2 1/3 1/3 1/3 1/2 2/3 2/3 2/3 2/3 
{a, c} 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 
{a, d} 1/3 1/2 1/3 1/3 1/3 1/2 2/3 2/3 2/3 2/3 
{b, c} 1/3 1/2 1/3 1/3 1/3 1/2 2/3 2/3 2/3 2/3 
{b, d} 0 0 0 0 0 0 0 0 0 0 
{c, d} 1/3 1/2 1/3 1/3 1/3 1/2 2/3 2/3 2/3 2/3 

{a, b,c} 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 
{a, b,d} 1/3 1/3 1/3 1/3 1/3 1/3 1 1 1 1 
{a, c,d} 3/4 1/2 3/4 3/4 1/2 1/2 3/4 3/4 3/4 3/4 
{b, c,d} 1/3 1/3 1/3 1/3 1/3 1/3 1 1 1 1 

 
Remark 3.2: 
 From examples (3.4) and (3.5) above we have: 

(a) ij
Gm (V(H)) ≤ i

Gm (V(H)), i
Gm
 (V(H)), Oi

Gm (V(H)); i,j{R,O, α, pre, β}. 

(b)  ePr
Gm (V(H)) ≤ eOPr

Gm (V(H)) , eRPr
Gm (V(H)) ≤ OR

Gm (V(H)). 

 
Remark 3.3:     
 Let G=(V(G), E(G)) be a digraph, (V(G), CGm) be Gm-closure space, and P be a path of G such that V(P) is 
a set of vertices of P, then 
(a) The Gm-interior of P is IntGm(V(P))=V(G)\ClGm(V(G)\V(P)). 
(b) The Gm-closure of P is ClGm(V(P))=V(G)\IntGm(V(G)\V(P)). 
 
Example 3.6:                                                                                                 a              e4               d 
Consider the digraph in example (2.2)  
Take the paths                                                                                               e1             e5             e3 

P1=be1ae5c  ; V(P1)={b, a, c},                                                                      b            e2                  c 
P2=ae5ce3d  ; V(P2)={a, c, d}, 

P3=ce3d       ; V(P3)={c, d}, 
P1∩P2=ae5c ; V(P1∩P2)={a, c}, and 
P1 P3=be1ae5ce3d  ; V(P1 P3)={b, a, c, d}. 
 

Paths R
Gm (P) Gm (P) 

Gm (P) 
ePr

Gm (P) 
Gm (P) 

P1 0 1/4 3/4 3/4 3/4 
P2 0 0 0 0 0 
P3 0 0 0 0 0 

P1∩P2 0 0 0 0 0 
P1 P2 1 1 1 1 1 
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 It is clear that 

2G (P1)+ 2G (P2) ≤ 2G (P1 P2), 
i

2G (P2)+ i
2G (P2) ≤ i

2G (P1 P2) ;    i{R, α, pre, β}, 

2G (P1∩P2) ≤ 2G (P1)+ 2G (P2), and 
i

2G (P1∩P2) ≤ i
2G (P1)+ i

2G (P2)  ;    i{R, α, pre, β}. 

 
Remark 3.4: 
(a) The accuracy (resp., i-accuracy) of the union of two paths greatest or equal the sum of accuracy (resp., i-
accuracy) of them; i{R, α, pre, β}. 
(b) The accuracy (resp., i-accuracy) of the intersection of two paths smallest or equal the sum of accuracy (resp., 
i-accuracy) of them; i{R, α, pre, β}. 
 
Remark 3.5: 
 Let G=(V(G), E(G)) be a digraph and (V(G), CGm) its Gm-closure space,. If P1, P2 are two paths of G, then 
(a) ClGm(P1 P2)=ClGm(P1) ClGm(P2), 
(b) ClGm(P1∩P2)ClGm(P1)∩ClGm(P2), 
(c) IntGm(P1∩P2)=IntGm(P1)∩IntGm(P2), and 
(d) IntGm(P1) IntGm(P2) IntGm(P1 P2). 
 
Definition 3.3: 
 Let G=(V(G), E(G)) be a digraph, (V(G), CGm) be Gm-closure space and P  a path of G such that V(P) is a 
set of vertices of P. The Gm-boundary of  P is defined by:  BdGm(V(P))=ClGm(V(P))∩ClGm(V(G)\V(P)). 
 
Proposition 3.4: 
 Let G=(V(G), E(G)) be a digraph, (V(G), CGm) be Gm-closure space and P a path of G, then 
(a) BdGm(V(P))=BdGm(V(G)\V(P)). 
(b) ClGm(V(P))=V(P) BdGm(V(P)). 
(c) IntGm(V(P))=V(P)\BdGm(V(P)). 
Proof: Clear. 
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