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Most real-life situations need some sort of approximation to fit mathematical models. The beauty
of using topology in approximation is achieved via obtaining approximation for qualitative
subgraphs without coding or using assumption. The aim of this paper is to apply near concepts
in the Gm-closure approximation spaces. The basic notions of near approximations are introduced
and sufficiently illustrated. Near approximations are considered as mathematical tools to modify
the approximations of graphs. Moreover, proved results, examples, and counterexamples are
provided.

1. Introduction

The theory of rough sets, proposed by Pawlak [1], is an extension of set theory for the
study of intelligent systems characterized by insufficient and incomplete information. Using
the concepts of lower and upper approximation in rough set theory, knowledge hidden in
information systems may be unraveled and expressed in the form of decision rules. The
notions of closure operator and closure system are very useful tools in several sections of
mathematics, as an example, in algebra [2–4], topology [5–7], and computer science theory
[8, 9]. Many works have appeared recently, for example, in structural analysis [10, 11], in
chemistry [12], and in physics [13]. The purpose of the present work is to put a starting point
for the application of abstract topological graph theory in the rough set analysis. Also, we
will integrate some ideas in terms of concept in topological graph theory. Topological graph
theory is a branch of mathematics, whose concepts exist not only in almost all branches
of mathematics but also in many real-life applications. We believe that topological graph
structure will be an important base for modification of knowledge extraction and processing.
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2. Preliminaries

This section presents a review of some fundamental notions of Pawlak’s rough sets [1, 14, 15]
and Gm-closure spaces [10, 11].

2.1. Fundamental Notions of Uncertainty

Motivation for rough set theory has come from the need to represent subsets of a universe
in terms of equivalence classes of a partition of that universe. The partition characterizes a
topological space, called approximation spaceK = (X,R), whereX is a set called the universe
and R is an equivalence relation [15, 16]. The equivalence classes of R are also known as
the granules, elementary sets or blocks; we will use Rx ⊆ X to denote the equivalence class
containing x ∈ X. In the approximation space, we consider two operators, the upper and
lower approximations of subsets: let A ⊆ X, then the lower approximation (resp., the upper
approximation) of A is given by

L(A) = {x ∈ X : Rx ⊆ A}
(
resp., U(A) =

{
x ∈ X : Rx ∩A/=φ

})
. (2.1)

Boundary, positive, and negative regions are also defined:

BdR(A) = U(A) − L(A), POSR(A) = L(A), NEGR(A) = X −U(A). (2.2)

In an approximation space K = (X,R), if A and B are two subsets of X, then directly
from the definitions of lower and upper approximations, we can get the following properties
of the lower and upper approximations [15]:

(1) L(A) ⊆ A ⊆ U(A),

(2) L(φ) = U(φ) = φ and L(X) = U(X) = X,

(3) U(A ∪ B) = U(A) ∪U(B),

(4) L(A ∩ B) = L(A) ∩ L(B),

(5) If A ⊆ B, then L(A) ⊆ L(B),

(6) If A ⊆ B, then U(A) ⊆ U(B),

(7) L(A ∪ B) ⊇ L(A) ∪ L(B),

(8) U(A ∩ B) ⊆ U(A) ∩U(B),

(9) L(Ac) = [U(A)]c,

(10) U(Ac) = [L(A)]c,

(11) L(L(A)) = U(L(A)) = L(A),

(12) U(U(A)) = L(U(A)) = U(A).

The inexactness of a set is due to the existence of a boundary region. The greater of the
boundary region of a set, means the Pawlak [1], introduced the accuracy measure which is
considered as a numerical characterization of imprecision. The following definition gives the
accuracy measure of a subset A ⊆ X in approximation space K = (X,R).
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Definition 2.1. Let K = (X,R) be an approximation space. The accuracy measure of a subset
A ⊆ X is defined by η(A) and define by

η(A) =
|L(A)|
|U(A)| , where |U(A)|/= 0. (2.3)

The accuracy measure is also called the accuracy of approximation.

2.2. Fundamental Notions of Gm-Closure Spaces

In this section, we introduce the concepts of closure operators on digraphs; several known
topological properties on the obtained Gm-closure spaces are studied.

Definition 2.2 (see [10, 11]). Let G = (V (G), E(G)) be a digraph, P(V (G)) its power set of all
subgraphs of G, and ClG : P(V (G)) → P(V (G)) a mapping associating with each subgraph
H = (V (H), E(H)); a subgraph ClG(V (H)) ⊆ V (G) is called the closure subgraph of H such
that

ClG(V (H)) = V (H) ∪
{
v ∈ V (G) − V (H); �hv ∈ E(G)∀h ∈ V (H)

}
. (2.4)

The operation ClG is called graph closure operator, and the pair (G,FG) is called G-closure
space, where FG is the family of elements of ClG. Evidently ClG(V (H)) = ∩{V (F); V (F) ∈
FG and V (H) ⊆ V (F)}. The dual of the graph closure operator ClG is the graph interior
operator IntG : P(V (G)) → P(V (G)) defined by IntG(V (H)) = V (G)−ClG(V (G)−V (H)) for
all subgraphH ⊆ G. A family of elements of IntG is called interior subgraph ofH and denoted
byTG. It is clear that (G,TG) is a topological space. Evidently IntG(V (H)) = ∪{V (O); V (O) ∈
TG and V (O) ⊆ V (H)}. Then the domain of ClG is equal to the domain of IntG and also
ClG(V (H)) = V (G) − IntG(V (G) − V (H)). A subgraph H of G-closure space (G,TG) is called
closed subgraph if ClG(V (H)) = V (H). It is called open subgraph if its complement is closed
subgraph, that is, ClG(V (G) − V (H)) = V (G) − V (H), or equivalently IntG(V (H)) = V (H).

Example 2.3. Let G = (V (G), E(G)) be a digraph such that:

V (G) = {v1, v2, v3, v4},
E(G) = {(v1, v2), (v1, v3), (v2, v1), (v2, v3), (v4, v3)}, for more details (Table 1)

v1                                v4 

v2                                v3 

FG = {V (G), φ, {v3}, {v3, v4}, {v1, v2, v3}},
TG = {V (G), φ, {v4}, {v1, v2}, {v1, v2, v4}}.

We obtain a new definition to construct topological closure spaces from G-closure
spaces by redefining graph closure operator on the resultant subgraphs as a domain of the
graph closure operator and stop when the operator transfers each subgraph to itself.
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Table 1

V (H) ClG(V (H)) V (H) ClG(V (H))
V (G) V (G) {v1, v4} V (G)
φ φ {v2, v3} {v1, v2, v3}
{v1} {v1, v2, v3} {v2, v4} V (G)
{v2} {v1, v2, v3} {v3, v4} {v3, v4}
{v3} {v3} {v1, v2, v3} V (G)
{v4} {v3, v4} {v1, v2, v4} V (G)
{v1, v2} {v1, v2, v3} {v1, v3, v4} V (G)
{v1, v3} {v1, v2, v3} {v2, v3, v4} V (G)

Definition 2.4 (see [10, 11]). Let G = (V (G), E(G)) be a digraph and ClGm : P(V (G)) →
P(V (G)) an operator such that:

(a) It is calledGm-closure operator if ClGm(V (H)) = ClG(ClG(. . .ClG(V (H)))),m-times,
for every subgraph H ⊆ G,

(b) it is called Gm-topological closure operator if ClGm+1(V (H)) = ClGm(V (H)) for all
subgraph H ⊆ G.

The space (G,FGm) is called Gm-closure space.

Example 2.5. Let G = (V (G), E(G)) be a digraph such that:

V (G) = {v1, v2, v3, v4},
E(G) = {(v1, v3), (v2, v1), (v2, v3), (v3, v4), (v4, v1)}, for more details (see Table 2)

v1                                v4 

v2                                v3 

FG2 = {V (G), φ, {v1, v3, v4}},
TG2 = {V (G), φ, {v2}}.

Proposition 2.6 (see [10]). Let (G, FGm) be a Gm-closure space. If H and K are two subgraphs of
G such that H ⊆ K ⊆ G, then

ClGm(V (H)) ⊆ ClGm(V (K)), IntGm(V (H)) ⊆ IntGm(V (K)). (2.5)

Proposition 2.7 (see [10]). Let (G,FGm) be a Gm-closure space. If H and K are two subgraphs of
G, then

(a) ClGm(V (H) ∪ V (K)) = ClGm(V (H)) ∪ ClGm(V (K)),

(b) IntGm(V (H) ∩ V (K)) = IntGm(V (H)) ∩ IntGm(V (K)).
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Table 2

V (H) ClG(V (H)) ClG2(V (H)) V (H) ClG(V (H)) ClG2(V (H))
V (G) V (G) V (G) {v1, v4} {v1, v3, v4} {v1, v3, v4}
φ φ φ {v2, v3} V (G) V (G)
{v1} {v1, v3} {v1, v3, v4} {v2, v4} V (G) V (G)
{v2} {v1, v2, v3} V (G) {v3, v4} {v1, v3, v4} {v1, v3, v4}
{v3} {v3, v4} {v1, v3, v4} {v1, v2, v3} V (G) V (G)
{v4} {v1, v4} {v1, v3, v4} {v1, v2, v4} V (G) V (G)
{v1, v2} {v1, v2, v3} V (G) {v1, v3, v4} {v1, v3, v4} {v1, v3, v4}
{v1, v3} {v1, v3, v4} {v1, v3, v4} {v2, v3, v4} V (G) V (G)

Proposition 2.8 (see [10]). Let (G, FGm) be a Gm-closure space. If H and K are two subgraphs of
G, then

(a) ClGm(V (H) ∩ V (K)) ⊆ ClGm(V (H)) ∩ ClGm(V (K)), and

(b) IntGm(V (H)) ∪ IntGm(V (K)) ⊆ IntGm(V (H) ∪ V (K)).

Remark 2.9. The converse of Proposition 2.8 need not be true in general, as the following
example (Example 2.3 in [10]).

Definition 2.10 (see [10]). Let (G,FGm) be a Gm-closure space and H ⊆ G; the boundary of H
is denoted by BdGm(V (H)) and is defined by

BdGm(V (H)) = ClGm(V (H)) − IntGm(V (H)). (2.6)

Proposition 2.11 (see [10]). Let (G, FGm) be a Gm-closure space and H ⊆ G, then

(a) BdGm(V (H)) = ClGm(V (H)) ∩ ClGm(V (G) − V (H)),

(b) BdGm(V (H)) = BdGm(V (G) − V (H)),

(c) ClGm(V (H)) = V (H) ∪ BdGm(V (H)),

(d) IntGm(V (H)) = V (H) − BdGm(V (H)).

By a similar way of definitions of regular open set [17], semiopen set [18], preopen set
[19], γ-open set [20] (b-open set [21]), α-open set [22], and β-open set [23] (=semi-pre-open
set [24]), we introduce the following definitions which are essential for our present study. In
Gm-closure space (G, FGm) the subgraph H of G is called

(a) regular open subgraph [10] (briefly R-osg) if V (H) = IntGm(ClGm(V (H))),

(b) semiopen subgraph [10] (briefly S-osg) if V (H) ⊆ ClGm(IntGm(V (H))),

(c) preopen subgraph [10] (briefly P -osg) if V (H) ⊆ IntGm(ClGm(V (H))),

(d) γ-open subgraph (briefly γ-osg) if V (H) ⊆ ClGm(IntGm(V (H))) ∪
IntGm(ClGm(V (H))),

(e) α-open subgraph [10] (briefly α-osg) if V (H) ⊆ IntGm(ClGm(IntGm(V (H))),

(f) β-open subgraph [10] (briefly β-osg) if V (H) ⊆ ClGm(IntGm(ClGmV (H))).
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The complement of an R-osg (resp., S-osg, P -osg, γ-osg, α-osg, and β-osg) is called
R-closed subgraph (briefly R-csg) (resp., S-csg, P -csg, γ-csg, α-csg, and β-csg).

The family of all R-osgs (resp., S-osgs, P -osgs, γ-osgs, α-osgs, and β-osgs) of (G, FGm)
is denoted by ROGm(G) (resp., SOGm(G), POGm(G), γOGm(G), αOGm(G), and βOGm(G)). All
of SOGm(G), POGm(G), γOGm(G), αOGm(G), and βOGm(G) are larger than TGm and closed
under forming arbitrary union.

The family of all R-csgs (resp., S-csgs, P -csgs, γ-csgs, α-csgs, and β-csgs) of (G, FGm)
is denoted by RCGm(G) (resp., SCGm(G), PCGm(G), γCGm(G), αCGm(G), and βCGm(G)).

The near closure (resp., near interior and near boundary) of a subgraph H of G in a
Gm-closure space (G, FGm) is denoted by CljGm(V (H)) (resp. IntjGm(V (H)) and Bdj

Gm(V (H)))
and defined by

CljGm(V (H)) = ∩
{
V (F); V (F) is j-csg and V (H) ⊆ V (F)

}
,

(
resp., IntjGm(V (H)) = V (G) − CljGm(V (G) − V (H)) and

Bdj

Gm(V (H)) = CljGm(V (H)) − IntjGm(V (H))
)
, where j ∈

{
R, S, P, γ, α, β

}
.

(2.7)

Proposition 2.12 (see [10]). Let (G, FGm) be Gm-closure space, the implication TGm and the
families of near-open and near-closed graphs are given by following statements:

(a) ROGm(G) ⊆ TGm ⊆ αOGm(G) ⊆ SOGm(G) ⊆ γOGm(G) ⊆ βOGm(G),

(b) ROGm(G) ⊆ TGm ⊆ αOGm(G) ⊆ POGm(G) ⊆ γOGm(G) ⊆ βOGm(G),

(c) RCGm(G) ⊆ FGm ⊆ αCGm(G) ⊆ SCGm(G) ⊆ γCGm(G) ⊆ βCGm(G),

(d) RCGm(G) ⊆ FGm ⊆ αCGm(G) ⊆ PCGm(G) ⊆ γCGm(G) ⊆ βCGm(G).

3. Generalization of Pawlak Approximation Spaces

In this sectionwewill generalize Pawlak’s concepts in the case of general relations. Hence, the
approximation space Gm = (G,ClGm) with general relation ClGm on G (i.e., closure operator
ClGm onG) defines a uniquelyGm-closure space (G,FGm), where FGm is theGm-closure space
associated with Gm. We will give this hypothesis in the following definition.

Definition 3.1. Let Gm = (G,ClGm) be an approximation space, where G is a finite and
nonempty universe graph, ClGm is a general relation on G, and FGm is the Gm-closure space
associated withGm. Then the tripleGm = (G,ClGm,FGm) is called aGm-closure approximation
space.

The following definition introduces the lower and the upper approximations in a Gm-
closure approximation space Gm = (G,ClGm,FGm).

Definition 3.2. Let Gm = (G,ClGm,FGm) be a Gm-closure approximation space and H ⊆
G. The lower approximation (resp., the upper approximation) of H is denoted by
L(V (H)) (resp., U(V (H))) and is defined by

L(V (H)) = IntGm(V (H))
(
resp., U(V (H)) = ClGm(V (H))

)
. (3.1)
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The following definition introduces new concepts of definability for a subgraphH ⊆ G
in a Gm-closure approximation space Gm = (G,ClGm,FGm).

Definition 3.3. Let Gm = (G,ClGm,FGm) be a Gm-closure approximation space. If H ⊆ G, then
H is called

(a) totally Gm-definable (Gm-exact) graph if L(V (H)) = V (H) = U(V (H)),

(b) internally Gm-definable graph if L(V (H)) = V (H), U(V (H))/=V (H),

(c) externally Gm-definable graph if L(V (H))/=V (H), U(V (H)) = V (H),

(d) Gm-indefinable (Gm-rough) graph if L(V (H))/=V (H), U(V (H))/=V (H).

Proposition 3.4. Let Gm = (G,ClGm,FGm) be a Gm-closure approximation space. If H and K are
subgraphs of G, then

(1) L(V (H)) ⊆ V (H) ⊆ U(V (H)),

(2) L(φ) = U(φ) = φ and L(V (G)) = U(V (G)) = V (G),

(3) U(V (H) ∪ V (K)) = U(V (H)) ∪U(V (K)),

(4) L(V (H) ∩ V (K)) = L(V (H)) ∩ L(V (K)),

(5) if H ⊆ K, then L(V (H)) ⊆ L(V (K)),

(6) if H ⊆ K, then U(V (H)) ⊆ U(V (K)),

(7) L(V (H) ∪ V (K)) ⊇ L(V (H)) ∪ L(V (K)),

(8) U(V (H) ∩ V (K)) ⊆ U(V (H)) ∩U(V (K)),

(9) L(V (G) − V (H)) = V (G) −U(V (H)),

(10) U(V (G) − V (H)) = V (G) − L(V (H)).

Proof. By using properties of Gm-interior and Gm-closure, the proof is obvious.

The following example illustrates that properties 11 and 12 which are introduced in
Section 2.1 cannot be applied for this new generalization.

Example 3.5. Let Gm = (G,ClGm,FGm) be a Gm-closure approximation space such that
G = (V (G), E(G)): V (G) = {v1, v2, v3, v4}, E(G) = {(v2, v1), (v2, v4), (v3, v1), (v4, v1), (v4, v1)},
v1                               v4     

v2                 v3    
G H

v1

v2 v3 

v1                              v4 

v2 
K  

FG = {V (G), φ, {v1}, {v1, v3}, {v1, v2, v4}},
TG = {V (G), φ, {v3}, {v2, v4}, {v2, v3, v4}}.
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Let H = (V (H), E(H)): V (H) = {v1, v2, v3}, E(H) = {(v2, v1), (v3, v1)}, and K =
(V (K), E(K)): V (K) = {v1, v2, v4}, E(K) = {(v2, v1), (v2, v4), (v4, v1), (v4, v2)}. Then

L(L(V (H))) = L(V (H)) = {v3}, U(L(V (H))) = {v1, v3}. (3.2)

Thus,

L(L(V (H))) = L(V (H))/=U(L(V (H))). (3.3)

Also,

U(U(V (H))) = U(V (H)) = {v1, v2, v4}, L(U(V (H))) = {v2, v4}. (3.4)

Thus,

U(U(V (H))) = U(V (H))/=L(U(V (H))). (3.5)

Lemma 3.6. Let (G,FGm) be a Gm-closure space. Then

IntGm(V (G) − V (H)) = V (G) − ClGm(V (H)) ∀subgraph H ⊆ G. (3.6)

Proof. It follows from definition of Gm-closure space.

Lemma 3.7. LetH be a subgraph of G in the Gm-closure space (G,FGm). Then v ∈ ClGm(V (H)) if
and only if for each subgraph K ⊆ G and v ∈ IntGm(V (K)), then IntGm(V (K)) ∩ V (H)/=φ.

Proof. (⇒) Let v ∈ ClGm(V (H)) and v ∈ IntGm(V (K)) for some K ⊆ G. Assume
IntGm(V (K)) ∩ V (H) = φ. This implies that V (H) ⊆ V (G) − IntGm(V (K)) which is
closed graph. Hence, v ∈ V (G) − IntGm(V (K)), since v ∈ ClGm(V (H)) and this leads to
a contradiction. Therefore, IntGm(V (K)) ∩ V (H)/=φ.

(⇐) Suppose that for each K ⊆ G and v ∈ IntGm(V (K)), IntGm(V (K)) ∩ V (H) /= φ.
Let v /∈ ClGm(V (H)) which is closed. Then there exists a closed graph F ⊆ G such that
F ⊇ H and v /∈ V (F). Hence, V (G) − V (F) is open subgraph containing v. Thus, v ∈
IntGm(V (G) − V (F)) = V (G) − V (F) and IntGm(V (G) − V (F)) ∩ V (H) = φ, that is, there
exists a subgraph K = G − F of G such that IntGm(V (K)) ∩ V (H) = φ, which leads to a
contradiction. Therefore, v ∈ ClGm(V (H).

Lemma 3.8. Let H and K be two subgraphs of G in the Gm-closure space (G,FGm). If H is open
subgraph, then V (H) ∩ ClGm(V (K)) ⊆ ClGm(V (H) ∩ V (K)).

Proof. Let v ∈ V (H) ∩ ClGm(V (K)). If O is open subgraph such that v ∈ V (O), then
V (O) ∩ V (H) is an open subgraph and v ∈ V (O) ∩ V (H). Therefore, V (O) ∩ (V (H) ∩
V (K))/=φ and v ∈ ClGm(V (H) ∩ V (K)). Hence, the result.
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Proposition 3.9. Let Gm = (G,ClGm,FGm) be a Gm-closure approximation space. If H and K are
subgraphs of G, then

(a) L(V (H) − V (K)) ⊆ L(V (H)) − L(V (K)),

(b) U(V (H) − V (K)) ⊇ U(V (H) −U(V (K)).

Proof. (a) We need to show that IntGm(V (H) − V (K)) ⊆ IntGm(V (H)) − IntGm(V (K)). Now,

V (H) − V (K) = V (H) ∩ (V (G) − V (K)). (3.7)

Then,

IntGm(V (H) − V (K)) = IntGm(V (H) ∩ (V (G) − V (K)))

= IntGm(V (H)) ∩ IntGm(V (G) − V (K)).
(3.8)

Thus, by Lemma 3.6, we have

IntGm(V (H) − V (K)) = IntGm(V (H)) ∩ (V (G) − ClGm(V (K)))

= IntGm(V (H)) − ClGm(V (K))

⊆ IntGm(V (H)) − IntGm(V (K)).

(3.9)

Therefore,

L(V (H) − V (K)) = IntGm(V (H) − V (K)) ⊆ IntGm(V (H)) − IntGm(V (K))

= L(V (H)) − L(V (K)).
(3.10)

(b)We need to show that

ClGm(V (H) − V (K)) ⊇ ClGm(V (H)) − ClGm(V (K)). (3.11)

Now,

ClGm(V (H)) − ClGm(V (K)) = ClGm(V (H)) ∩ (V (G) − ClGm(V (K))). (3.12)

Thus, by Lemma 3.6, we have

ClGm(V (H)) − ClGm(V (K)) = ClGm(V (H)) ∩ IntGm(V (G) − V (K)). (3.13)
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Hence, by Lemma 3.8, we have

ClGm(V (H)) − ClGm(V (K)) = ClGm(V (H)) ∩ IntGm(V (G) − V (K))

⊆ ClGm[V (H) ∩ IntGm(V (G) − V (K))]

= ClGm[V (H) ∩ V (G) − ClGm(V (K))]

= ClGm[V (H) − ClGm(V (K))],

(3.14)

Thus,

ClGm(V (H)) − ClGm(V (K)) ⊆ ClGm(V (H) − V (K)). (3.15)

Therefore,

U(V (H) − V (K)) = ClGm(V (H) − V (K)) ⊇ ClGm(V (H)) − ClGm(V (K))

= U(V (H)) −U(V (K)).
(3.16)

4. Near Lower and Near Upper in Gm-Closure Approximation Spaces

In this section, we study approximation spaces fromGm-closure view.We obtain some rules to
find lower and upper approximations in several ways in approximation spaces with general
relations. We will recall and introduce some definitions and propositions about some classes
of near-open graphs which are essential for our present study.

Definition 4.1. Let Gm = (G,ClGm,FGm) be a Gm-closure approximation space and H ⊆ G.
The near-lower approximation (j-lower approximation) (resp., near-upper approximation (j-
upper approximation)) of H is denoted by Lj(V (H)) (resp., Uj(V (H))) and is defined by

Lj(V (H)) = IntjGm(V (H))
(
resp., Uj(V (H)) = CljGm(V (H))

)
,

where j ∈
{
R, S, P, γ, α, β

}
.

(4.1)

Proposition 4.2. Let Gm = (G, ClGm, FGm) be a Gm-closure approximation space. IfH ⊆ G, then
L(V (H)) ⊆ Lj(V (H)) ⊆ V (H) ⊆ Uj(V (H)) ⊆ U(V (H)), for all j ∈ {S, P, γ, α, β}.

Proof. The proofs of the five cases are similar, so we will only prove the case when j = S. Now,

U(V (H)) = ClGm(V (H)) = ∩{V (F);V (F) ∈ FGm and V (H) ⊆ V (F)}

⊇ ∩{V (F);V (F) ∈ SCGm(G) and V (H) ⊆ V (F)}

since FGm ⊆ SCGm(G)

= ClSGm(V (H)) = US(V (H)) ⊇ V (H),

(4.2)
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L(V (H)) = IntGm(V (H)) = V (G) − ClGm(V (G) − V (H))

⊆ V (G) − ClSGm(V (G) − V (H))

since TGm ⊆ SOGm(G)

= IntSGm(V (H)) = LS(V (H)) ⊆ V (H).

(4.3)

From (4.2) and (4.3) we get L(V (H)) ⊆ LS(V (H)) ⊆ V (H) ⊆ US(V (H)) ⊆ U(V (H)).

In general the above proposition is not true in the case of j = R as the following
example illustrates.

Example 4.3. Let Gm = (G,ClGm,FGm) be a Gm-closure approximation space such that G =
(V (G), E(G)): V (G) = {v1, v2, v3}, E(G) = {(v2, v1), (v2, v3)},
v1 

v2                            v3 

FG = {V (G), φ, {v1}, {v3}, {v1, v3}},

TG = {V (G), φ, {v2}, {v1, v2}, {v2, v3}}.

Hence, ROGm(G) = {V (G), φ} and RCGm(G) = {V (G), φ}. If H = (V (H), E(H)): V (H) =
{v1, v3}, E(H) = φ, then

L(V (H)) = IntGm(V (H)) = φ, U(V (H)) = ClGm(V (H)) = {v1, v3},

LR(V (H)) = IntRGm(V (H)) = φ, UR(V (H)) = ClRGm(V (H)) = V (G).
(4.4)

Therefore,

LR(V (H)) = L(V (H)), U(V (H)) ⊆ UR(V (H)). (4.5)

Proposition 4.4. LetGm = (G,ClGm,FGm) be a Gm- closure approximation space. IfH ⊆ G, then the
implication between lower approximation and j-lower approximation of H are given by the following
statement for all j ∈ {S, P, γ, α, β}:

(a) L(V (H)) ⊆ Lα(V (H)) ⊆ LS(V (H)) ⊆ Lγ(V (H)) ⊆ Lβ(V (H)),

(b) L(V (H)) ⊆ Lα(V (H)) ⊆ LP (V (H)) ⊆ Lγ(V (H)) ⊆ Lβ(V (H)).
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Proof. By using Proposition 4.2, we get L(V (H)) ⊆ Lα(V (H)). We will prove Lα(V (H)) ⊆
LS(V (H)). Now,

Lα(V (H)) = IntαGm(V (H)) = V (G) − ClαGm(V (G) − V (H))

⊆ V (G) − ClSGm(V (G) − V (H)),
(4.6)

since αOGm(G) ⊆ SOGm(G). Thus,

Lα(V (H)) = IntαGm(V (H)) ⊆ IntSGm(V (H)) = LS(V (H)). (4.7)

Similarly we can prove the other cases.

Proposition 4.5. Let Gm = (G,ClGm,FGm) be a Gm-closure approximation space. If H ⊆ G,
then the implication between upper approximation and j-upper approximation of H are given by the
following statement for all j ∈ {S, P, γ, α, β},

(a) Uβ(V (H)) ⊆ Uγ(V (H)) ⊆ US(V (H)) ⊆ Uα(V (H)) ⊆ U(V (H)),

(b) Uβ(V (H)) ⊆ Uγ(V (H)) ⊆ UP (V (H)) ⊆ Uα(V (H)) ⊆ U(V (H)).

Proof. By using Proposition 4.2, we get Uα(V (H)) ⊆ U(V (H)). We will prove UP (V (H)) ⊆
Uα(V (H)). Now,

UP (V (H)) = ClPGm (V (H)) = ∩ {V (F);V (F) ∈ PCGm(G) and V (H) ⊆ V (F)}

⊆ ∩ {V (F);V (F) ∈ αCGm(G) and V (H) ⊆ V (F)}
(4.8)

since αCGm(G) ⊆ PCGm(G). Thus,

UP (V (H)) = ClPGm(V (H)) ⊆ ClαGm(V (H)) = Uα(V (H)). (4.9)

Similarly we can prove the other cases.

Proposition 4.6. Let Gm = (G,ClGm,FGm) be a Gm-closure approximation space. If H and K are
two subgraphs of G, then, for all j ∈ {R, S, P, γ, α, β},

(1) Lj(φ) = Uj(φ) = φ and Lj(V (G)) = Uj(V (G)) = V (G),

(2) if V (H) ⊆ V (K), then Lj(V (H)) ⊆ Lj(V (K)),

(3) if V (H) ⊆ V (K), then Uj(V (H)) ⊆ Uj(V (K)),

(4) Lj(V (H) ∪ V (K)) ⊇ Lj(V (H)) ∪ Lj(V (K)),

(5) Uj(V (H) ∪ V (K)) ⊇ Uj(V (H)) ∪Uj(V (K)),

(6) Lj(V (H) ∩ V (K)) ⊆ Lj(V (H)) ∩ Lj(V (K)),

(7) Uj(V (H) ∩ V (K)) ⊆ Uj(V (H)) ∩Uj(V (K)),

(8) Lj(V (H)c) = [Uj(V (H))]c,

(9) Uj(V (H)c) = [Lj(V (H))]c.
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Proof. By using properties of j-interior and j-closure for all j ∈ {R, S, P, γ, α, β}, the proof is
obvious.

In general, properties 3 and 4 which are introduced in Section 2.1 cannot be applied for
j-lower and j-upper approximations, where j ∈ {S, P, γ, β}. The following example illustrates
this fact in the case of j = β.

Example 4.7. Let Gm = (G,ClGm,FGm) be a Gm-closure approximation space which is given in
Example 2.3:

FG = {V (G), φ, {v3}, {v3, v4}, {v1, v2, v3}},
TG = {V (G), φ, {v4}, {v1, v2}, {v1, v2, v4}}.

βOG1(G) =
{
V (G), φ, {v1}, {v2}, {v4}, {v1, v2}, {v1, v3}{v1, v4}, {v2, v3}, {v2, v4} ,

{v3, v4}, {v1, v2, v3}, {v1, v2, v4}, {v1, v3, v4}, {v2, v3, v4}},

βCG1(G) =
{
V (G), φ, {v1}, {v2}, {v3}, {v4}, {v1, v2}{v1, v3}, {v1, v4}, {v2, v3} ,

{v2, v4}, {v3, v4}, {v1, v2, v3}, {v1, v3, v4}, {v2, v3, v4}}.

(4.10)

If

H = (V (H), E(H)); V (H) = {v1, v3}, E(H) = {(v1, v3)},

K = (V (K), E(K)); V (K) = {v2, v3}, E(K) = {(v2, v3)},
(4.11)

then

Lβ(V (H)) ∩ Lβ(V (K)) = {v1, v3} ∩ {v2, v3} = {v3}, (4.12)

but

Lβ(V (H) ∩ V (K)) = φ. (4.13)

Thus,

Lβ(V (H) ∩ V (K)) /= Lβ(V (H)) ∩ Lβ(V (K)). (4.14)

Also, if

H = (V (H), E(H)); V (H) = {v1, v2}, E(H) = {(v1, v2), {v2, v1}},

K = (V (K), E(K)); V (K) = {v1, v4}, E(K) = φ,
(4.15)

then

Uβ(V (H)) ∪ Uβ(V (K)) = {v1, v2} ∪ {v1, v4} = {v1, v2, v4}, (4.16)
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but

Uβ(V (H) ∪ V (K)) = V (G). (4.17)

Thus,

Uβ(V (H) ∪ V (K))/= Uβ(V (H)) ∪ Lβ(V (K)). (4.18)

In general, properties 11 and 12 which are introduced in Section 2.1 cannot be applied
for j-lower and j-upper approximations, where j ∈ {S, P, γ, β}. The following example
illustrates this fact in the case of j = β.

Example 4.8. Let Gm = (G,ClGm,FGm) be a Gm-closure approximation space which is given in
Example 2.3. If

H =(V (H), E(H)); V (H) = {v1, v2, v4}, E(H) = {(v1, v2), (v2, v1)},

K =(V (K), E(K)); V (K) = {v3}, E(K) = φ,
(4.19)

then

Lβ
(
Lβ(V (H))

)
= Lβ(V (H)) = {v1, v2, v4}, Uβ

(
Lβ(V (H))

)
= V (G). (4.20)

Thus,

Lβ
(
Lβ(V (H))

)
= Lβ(V (H)) /= Uβ

(
Lβ(V (H))

)
. (4.21)

Also,

Uβ
(
Uβ(V (K))

)
= Uβ(V (K)) = {v3}, Lβ

(
Uβ(V (K))

)
= φ. (4.22)

Hence,

Uβ
(
Uβ(V (K))

)
= Uβ(V (K))/=Lβ

(
Uβ(V (K))

)
. (4.23)

Lemma 4.9. Let (G,FGm) be a Gm-closure space. Then IntjGm(V (G) − V (H)) = V (G) −
CljGm(V (H)) for all subgraph H ⊆ G and j ∈ {R, S, P, γ, α, β}.

Proof. It follows from definition near-open subgraphs in Gm-closure space.

Proposition 4.10. Let Gm = (G,ClGm,FGm) be a Gm-closure approximation space. If H and K are
subgraphs of G, then

Lj(V (H) − V (K)) ⊆ Lj(V (H)) − Lj(V (K)), ∀j ∈
{
R, S, P, γ, α, β

}
. (4.24)
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Proof. We need to show that

IntjGm(V (H) − V (K)) ⊆ IntjGm(V (H)) − IntjGm(V (K)). (4.25)

Now,

V (H) − V (K) = V (H) ∩ (V (G) − V (K)). (4.26)

Then

IntjGm(V (H) − V (K)) = IntjGm(V (H) ∩ (V (G) − V (K)))

⊆ IntjGm(V (H)) ∩ IntjGm(V (G) − V (K)).
(4.27)

Thus, by Lemma 4.9, we have

IntjGm(V (H) − V (K)) ⊆ IntjGm(V (H)) ∩
(
V (G) − CljGm(V (K))

)

= IntjGm(V (H)) − CljGm(V (K)) ⊆ IntjGm(V (H)) − IntjGm(V (K)).
(4.28)

Therefore

Lj(V (H) − V (K)) = IntjGm(V (H) − V (K)) ⊆ IntjGm(V (H)) − IntjGm(V (K))

= Lj(V (H)) − Lj(V (K)).
(4.29)

In general, part (b) in Proposition 3.9 cannot be applied for j-upper approximations
for all j ∈ {R, S, P, γ, α, β}. Example 4.11 (resp., Example 4.12) illustrates that part (b) in
Proposition 3.9 cannot be applied in the case of j = β (resp., j = R).

Example 4.11. Let Gm = (G,ClGm,FGm) be a Gm-closure approximation space which is given
in Example 2.3. If

H = (V (H), E(H)); V (H) = {v1, v2, v4}, E(H) = {(v1, v2), (v2, v1)},

K = (V (K), E(K)); V (K) = {v1, v2}, E(K) = {(v1, v2), (v2, v1)},
(4.30)

then

Uβ(V (H) − V (K)) = Uβ({v4}) = {v4}, (4.31)

but

Uβ(V (H)) −Uβ(V (K)) = V (G) − {v1, v2} = {v3, v4}. (4.32)
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Hence,

Uβ(V (H) − V (K)) ⊆ Uβ(V (H)) −Uβ(V (K)). (4.33)

Example 4.12. Let Gm = (G, ClGm, FGm) be a Gm-closure approximation space which is
given in Example 2.3:

ROG1(G) =
{
V (G), φ, {v4}, {v1, v2}

}
,

RCG1(G) =
{
V (G), φ, {v3, v4}, {v1, v2, v3}

}
.

(4.34)

If

H = (V (H), E(H)); V (H) = {v1}, E(H) = φ,

K = (V (K), E(K)); V (K) = {v3}, E(K) = φ,
(4.35)

then

UR(V (H) − V (K)) = UR(φ
)
= φ, (4.36)

but

UR(V (H)) −UR(V (K)) = {v1, v2, v3} − {v3} = {v1, v2}. (4.37)

Hence,

UR(V (H) − V (K)) ⊆ UR(V (H)) −UR(V (K)). (4.38)

5. Near-Boundary Regions and Near Accuracy in Gm-Closure
Approximation Spaces

In this section we divide the boundary region into several levels. These levels help to decrease
the boundary region. In the following definition we introduce the near boundary region of a
subgraph H of G in a Gm-closure approximation space Gm = (G, ClGm, FGm).

Definition 5.1. Let Gm = (G, ClGm, FGm) be a Gm-closure approximation space and H ⊆ G.
The near-boundary (j-boundary) region of H is denoted by Bdj

Gm(V (H)) and is defined by

Bdj

Gm(V (H)) = Uj(V (H)) − Lj(V (H)), where j ∈
{
R, S, P, γ, α, β

}
. (5.1)

Definition 5.2. Let Gm = (G,ClGm,FGm) be a Gm-closure approximation space andH ⊆ G. The
near-positive (j-positive) region of H is denoted by POSjGm(V (H)) and is defined by

POSjGm(V (H)) = Lj(V (H)), where j ∈
{
R, S, P, γ, α, β

}
. (5.2)
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Definition 5.3. Let Gm = (G,ClGm,FGm) be a Gm-closure approximation space and H ⊆ G.
The near negative (briefly j-negative) region of H is denoted by NEGj

Gm(V (H)) and is
defined by

NEGj

Gm(V (H)) = V (G) −Uj(V (H)), where j ∈
{
R, S, P, γ, α, β

}
. (5.3)

Proposition 5.4. Let Gm = (G,ClGm,FGm) be a Gm-closure approximation space. IfH ⊆ G, then

Bdj

Gm(V (H)) ⊆ BdGm(V (H)) ∀j ∈
{
S, P, γ, α, β

}
. (5.4)

Proof. By using Proposition 4.2, the proof is obvious.

In general, the above proposition is not true in the case of j = R as illustrated in the
following example.

Example 5.5. Let Gm = (G, ClGm, FGm) be a Gm-closure approximation space which is given
in Example 2.3. If

H = (V (H), E(H)) : V (H) = {v1, v3}, E(H) = {(v1, v3)}, (5.5)

then

BdGm(V (H)) = U(V (H)) − L(V (H)) = ClGm(V (H)) − IntGm(V (H))

= ClGm({v1, v3}) − IntGm({v1, v3}) = {v1, v3} − φ = {v1, v3},

BdR
Gm(V (H)) = UR(V (H)) − LR(V (H)) = ClRGm(V (H)) − IntRGm(V (H))

= ClRGm({v1, v3}) − IntRGm({v1, v3}) = V (G) − φ = V (G).

(5.6)

Proposition 5.6. Let Gm = (G,ClGm,FGm) be a Gm-closure approximation space. If H ⊆ G, then
the implication between boundary and j-boundary of H given by the following statement for all j ∈
{S, P, γ, α, β}:

(a) Bdβ

Gm(V (H)) ⊆ Bdγ

Gm(V (H)) ⊆ BdS
Gm(V (H)) ⊆ Bdα

Gm(V (H)) ⊆ BdGm(V (H)),

(b) Bdβ

Gm(V (H)) ⊆ Bdγ

Gm(V (H)) ⊆ BdP
Gm(V (H)) ⊆ Bdα

Gm(V (H)) ⊆ BdGm(V (H)).

Proof. By using Propositions 4.4 and 4.5, the proof is obvious.

Definition 5.7. Let Gm = (G,ClGm,FGm) be a Gm-closure approximation space and H a finite
nonempty subgraph ofG. The near accuracy (j-accuracy) ofH is denoted by η

j

Gm(V (H)) and
is defined by

η
j

Gm(V (H)) =

∣∣Lj(V (H))
∣∣

∣∣Uj(V (H))
∣∣ , where

∣∣∣Uj(V (H))
∣∣∣/= 0 ∀j ∈

{
R, S, P, γ, α, β

}
. (5.7)
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Proposition 5.8. Let Gm = (G,ClGm,FGm) be a Gm-closure approximation space. If H is a
finite nonempty subgraph of G, then ηGm(V (H)) ≤ η

j

Gm(V (H)) for all j ∈ {S, P, γ, α, β}, where
ηGm(V (H)) = |L(V (H))|/|U(V (H))| is the accuracy ofH.

Proof. By using Proposition 4.2, the proof is obvious.

In general, the above proposition is not true in the case of j = R. This fact is illustrated
in the following example.

Example 5.9. Let Gm = (G,ClGm,FGm) be a Gm-closure approximation space which is given in
Example 4.3. If

H = (V (H), E(H)) : V (H) = {v1, v2}, E(H) = {(v2, v1)}, (5.8)

then

ηGm(V (H)) =
2
3
, ηR

Gm(V (H)) = 0. (5.9)

Thus,

ηR
Gm(V (H)) < ηGm(V (H)). (5.10)

Proposition 5.10. Let Gm = (G,ClGm,FGm) be a Gm-closure approximation space. If H ⊆ G,
then the implication between accuracy and j-accuracy of H is given by the following statement for all
j ∈ {S, P, γ, α, β}:

(a) ηGm(V (H)) ≤ ηα
Gm(V (H)) ≤ ηS

Gm(V (H)) ≤ η
γ

Gm(V (H)) ≤ η
β

Gm(V (H)),

(b) ηGm(V (H)) ≤ ηα
Gm(V (H)) ≤ ηP

Gm(V (H)) ≤ η
γ

Gm(V (H)) ≤ η
β

Gm(V (H)).

Proof. By using Propositions 4.4 and 4.5, the proof is obvious.

6. Rough and Near-Rough Cluster Vertices in Gm-Closure
Approximation Spaces

In this section, we introduce the definitions of definability of graphs, rough cluster vertices
and near-rough cluster vertices in approximation spaces with general relations. The following
definition introduces new concepts of definability for a subgraph H ⊆ G in a Gm-closure
approximation space Gm = (G, ClGm, FGm).

Definition 6.1. Let Gm = (G,ClGm,FGm) be aGm-closure approximation space. IfH ⊆ G, then
H is called

(a) totally jGm-definable (jGm-exact) graph if Lj(V (H)) = V (H) = Uj(V (H)),

(b) internally jGm-definable graph if Lj(V (H)) = V (H), Uj(V (H))/=V (H),

(c) externally jGm-definable graph if Lj(V (H))/=V (H), Uj(V (H)) = V (H),

(d) jGm-indefinable (jGm-rough) graph if Lj(V (H)) /= V (H), Uj(V (H)) /=V (H),
where j ∈ {R, S, P, γ, α, β}.
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Example 6.2. Let Gm = (G,ClGm,FGm) be a Gm-closure approximation space such that G =
(V (G), E(G)) : V (G) = {v1, v2, v3, v4}, E(G) = {(v2, v1), (v2, v4), (v3, v1), (v4, v1), (v4, v2)},
v1                               v4       

v2                      v3

G
v1  

v2                              v3

H  

FG = {V (G), φ, {v1}, {v1, v3}, {v1, v2, v4}},

TG = {V (G), φ, {v3}, {v2, v4}, {v2, v3, v4}}.

LetH = (V (H), E(H)): V (H) = {v1, v2, v3}, E(H) = {(v2, v1), (v3, v1)}, then, for j ∈ {S, P},
we get

POSSGm(V (H)) = LS(V (H)) = IntSGm(V (H)) = {v1, v3},

US(V (H)) = ClSGm(V (H)) = V (G),

BdS
Gm(V (H)) = BdS

Gm(V (H)) = {v2, v4},NEGS
Gm(V (H)) = φ,

POSPGm(V (H)) = LP (V (H)) = IntPGm(V (H)) = {v1, v2, v3},

UP (V (H)) = ClPGm(V (H)) = {v1, v2, v3},

BdS
Gm(V (H)) = BdP

Gm(V (H)) = φ,NEGP
Gm(V (H)) = {v4}.

(6.1)

Thus, H is an SGm-indefinable (SGm-rough) graph and PGm-definable (PGm-exact) graph.
The following definition introduces the concept of rough cluster vertices of a subgraph

H of G in a Gm-closure approximation Gm = (G,ClGm,FGm).

Definition 6.3. Let Gm = (G,ClGm,FGm) be a Gm-closure approximation space. The vertex v ∈
G is said to be a rough cluster vertex of a subgraph H of G if, for all subgraph K of G such
that v ∈ L(V (K)), (L(V (K)) − {v}) ∩ V (H) /= φ.

The graph of all rough cluster vertices of H is denoted by R′(V (H)) and is called the
rough derived graph ofH.

Theorem 6.4. Let Gm = (G,ClGm,FGm) be a Gm-closure approximation space. Then a subgraph H
of G is closed if and only if R′(V (H)) ⊆ V (H).
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Proof. (⇒) Suppose that H is a closed subgraph of G, and let v /∈ V (H) (i.e., v ∈ V (G) −
V (H)). Then V (G) − V (H) is open subgraph. Thus, v ∈ L(V (G) − V (H)) = IntGm(V (G) −
V (H)) = V (G) − V (H) and L(V (G) − V (H)) ∩ V (H) = φ. Hence, v /∈ R′(V (H)).
Therefore, R′(V (H)) ⊆ V (H).

(⇐) Let R′(V (H)) ⊆ V (H). To show that H is a closed subgraph of G, let v ∈
V (G) − V (H). Then v /∈ R′(V (H)), and hence there exists a subgraph Kv ⊆ G such that
v ∈ L(V (Kv)) and L(V (Kv) − V (v)) ∩ V (H) = φ. But v /∈ V (H), hence L(V (Kv)) ∩
V (H) = φ. So v ∈ L(V (Kv) ⊆ V (G) − V (H) and V (G) − V (H) =

⋃
v∈V (G)−V (H){v} ⊆⋃

v∈V (G)−V (H) L(V (Kv) ⊆
⋃

v∈V (G)−V (H) IntGm(V (Kv)) ⊆ V (G) − V (H).
Thus, V (G) − V (H) is a union of open graphs, which is open. Hence, H is closed

subgraph of G.

Example 6.5. Let Gm = (G,ClGm,FGm) be a Gm-closure approximation space such that
G = (V (G), E(G)): V (G) = {v1, v2, v3, v4}, E(G) = {(v1, v2), (v1, v3), (v2, v1), (v2, v3), (v4, v3)},

v1                               v4

v2                             v3
G

v1  

v2                              v3
H

FG = {V (G), φ, {v3}, {v3, v4}, {v1, v2, v3}},

TG = {V (G), φ, {v4}, {v1, v2}, {v1, v2, v4}}.

IfH = (V (H), E(H)): V (H) = {v1, v2, v3}, E(H) = {(v1, v2 ), (v1, v3), (v2, v1), (v2, v3)}, then
R′(V (H)) = {v1, v2, v3}. Thus, R′(V (H)) ⊆ V (H) andH is closed subgraph of G.

The following definition introduces the concept of near-rough (j-rough) cluster
vertices of a subgraph H of G in a Gm-closure approximation space Gm = (G,ClGm,FGm)
for all j ∈ {R, S, P, γ, α, β}.

Definition 6.6. Let Gm = (G,ClGm,FGm) be a Gm-closure approximation space. The vertex
v ∈ G is said to be near-rough (j-rough) cluster vertex of a subgraph H of G for all
j ∈ {R, S, P, γ, α, β}, if, for all subgraph K of G such that v ∈ Lj(V (K)), (Lj(V (K)) −
{v}) ∩ V (H)/=φ.

The graph of all j-rough cluster vertices ofH is denoted by R′
j(V (H)) and is called the

j-rough derived graph ofH for all j ∈ {R, S, P, γ, α, β}.

Theorem 6.7. Let Gm = (G,ClGm,FGm) be a Gm-closure approximation space. Then a subgraph H
of G is a j-closed for all j ∈ {S, P, γ, α, β} if and only if R′

j(V (H)) ⊆ V (H).
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Proof. The proofs of the five cases are similar, so we will only prove the case when j = β.
(⇒) Suppose thatH is a β-closed subgraph of G, and let v /∈ V (H) (i.e., v ∈ (V (G) −

V (H)). Then V (G) − V (H) ∈ βOGm(G). Thus, v ∈ Lβ(V (G) − V (H)) = IntβGm(V (G) −
V (H)) = V (G) − V (H) and Lβ(V (G) − V (H)) ∩ V (H) = φ. Hence, v /∈ R′

β(V (H)).
Therefore, R′

β(V (H)) ⊆ V (H).
(⇐) Let R′

β(V (H)) ⊆ V (H). To show that H is a β-closed subgraph of G, let v ∈
(V (G) − V (H)), then v /∈ R′(V (H)), and hence there exists a subgraph Kv ⊆ G such that
v ∈ Lβ(V (Kv)) and Lβ(V (Kv) − V (v)) ∩ V (H) = φ. But v /∈ V (H), hence Lβ(V (Kv)) ∩
V (H) = φ. So v ∈ Lβ(V (Kv) ⊆ V (G) − V (H) and V (G) − V (H) =

⋃
v∈V (G)−V (H){v} ⊆

⋃
v∈V (G)−V (H) L

β(V (Kv) ⊆
⋃

v∈V (G)−V (H) Int
β

Gm(V (Kv)) ⊆ V (G) − V (H).
Thus, V (G)−V (H) is a union of β-open graphs, which is β-open. Hence,H is β-closed

subgraph of G.

Example 6.8. Let Gm = (G, ClGm, FGm) be a Gm-closure approximation space which is given
in Example 6.5.

If H = (V (H), E(H));V (H) = {v1, v2}, E(H) = {(v1, v2), (v2, v1)}. Then R′
S(V (H)) =

{v1, v2}, thus R′
S(V (H)) ⊆ V (H) and H is S-closed subgraph of G.

v1 

v2 

In general, Theorem 6.7 cannot be satisfied in the case of j = R, as the following
example illustrates.

Example 6.9. Let Gm = (G,ClGm,FGm) be a Gm-closure approximation space which is given in
Example 6.5.

If H = (V (H), E(H));V (H) = {v3}, E(H) = φ. Then R′
R(V (H)) = {v3},

thus R′
R(V (H)) ⊆ V (H). But H is not an R-closed subgraph of G, since RCGm(G) =

{V (G), φ, {v3, v4}, {v1, v2, v3}}.

Theorem 6.10. Let H be a subgraph of G in the Gm-closure approximation space Gm =
(G, ClGm, FGm). Then v ∈ U(V (H)) if and only if, for each K ⊆ G and v ∈ L(V (K),
L(V (K)) ∩ V (H) /= φ.

Proof. (⇒) Let v ∈ U(V (H)) and v ∈ L(V (K)) for some K ⊆ G. Assume L(V (K)) ∩
V (H) = φ. This implies that V (G) ⊆ V (G) − L(V (K)). But V (G) − L(V (K)) = V (G) −
IntGm(V (K)) which is closed graph. Hence, v ∈ V (G) − L(V (K)), since v ∈ U(V (H)) and
this leads to a contradiction. Therefore, L(V (K)) ∩ V (H) /= φ.

(⇐) Suppose that, for each K ⊆ G and v ∈ L(V (K)), L(V (K)) ∩ V (H) /= φ. Let
v /∈ U(V (H)). But U(V (H)) = ClGm(V (H)) which is closed. Then there exists a closed
graph F ⊆ G such that F ⊇ H and v /∈ V (F). Hence, V (G)−V (F) is open graph containing
v. Thus,

v ∈ L(V (G) − V (F)) = IntGm(V (G) − V (F))

= V (G) − V (F),
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L(V (G) − V (F)) ∩ V (H) = φ.
(6.2)

that is, there exists a subgraph K = G − F such that L(V (K) ∩ V (H) = φ, which leads to
a contradiction. Therefore, v ∈ U(V (H)).

Theorem 6.11. Let H be a subgraph of G in the Gm-closure approximation space Gm =
(G,ClGm,FGm). Then v ∈ Uj(V (H)) for all j ∈ {S, P, γ, α, β} if and only if, for each K ⊆ G
and v ∈ Lj(V (K)), L(V (K)) ∩ V (H) /= φ.

Proof. The proof is similar to the proof of Theorem 6.10.

Theorem 6.12. Let H be a subgraph of G in the Gm-closure approximation space Gm =
(G,ClGm,FGm). ThenU(V (H) = V (H) ∪ R′(V (H)).

Proof. By Theorem 6.4, we get R′(V (H)) ⊆ U(V (H)). Then

V (H) ∪ R′(V (H)) ⊆ V (H) ∪U(V (H)) = U(V (H)). (6.3)

For the converse inclusion, let v ∈ U(V (H)), then either v ∈ V (H) and hence v ∈
V (H) ∪ R′(V (H)) or v /∈ V (H). Hence, by Theorem 6.10 for each K ⊆ G, v ∈ L(V (K)),
we get L(V (K)) ∩ V (H) /= φ. Then v ∈ R′(V (H)) and hence v ∈ V (H) ∪ R′

j(V (H)).
Thus, U(V (H)) ⊆ V (H) ∪ R′

j(V (H)). Therefore, U(V (H) = V (H) ∪ R′
j(V (H)).

Theorem 6.13. Let H be a subgraph of G in the Gm-closure approximation space Gm =
(G,ClGm,FGm). ThenUj(V (H)) = V (H)

⋃
Rj

′(V (H)) for all j ∈ {S, P, γ, α, β}.

Proof. The proof is similar to the proof of Theorem 6.12.

7. Conclusions

In this paper, we used Gm-topological concepts to introduce a generalization of Pawlak
approximation space. Concepts of definability for subgraphs inGm-approximation spaces are
introduced. Several types of approximations which are called near approximations are math-
ematical tools to modify the approximations. The suggested methods of near approximations
open way for constructing new types of lower and upper approximations.
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