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ABSTRACT 

The concept of -closedness, a kind of covering property for topological spaces, has already been studied with meticulous 
care from different angles and via different approaches. In this paper, we continue the said investigation in terms of a 
different concept viz. grills. The deliberations in the article include certain characterizations and a few necessary 

conditions for the -closedness of a space, the latter conditions are also shown to be equivalent to -closedness in a -
almost regular space. All these and the associated discussions and results are done with grills as the prime supporting 
tool. 
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1. INTRODUCTION AND PRELIMINARIES 

Generalized open sets play a very important role in general topology and they are now the research topics of many 
topologists worldwide. Indeed a significant theme in general topology and real analysis concerns the variously modified 

forms of continuity, separation axioms etc. by utilizing generalized open sets. For a subset A of a topological space (X, ), 

Cl(A) and Int(A) denote the closure of A and the interior of A, respectively. A subset A of a topological space (X, ) is 

called a -open [1] (= semi-pre-open [5]) set if A  Cl(Int(Cl(A))). The complement of a -open set is called a -closed set. 

The intersection of all -closed sets of X containing A is called the -closure [1] of A and is denoted by Cl(A). For each x 

 X, the family of all -open sets of (X, ) containing a point x is denoted by O(X, x). The -interior of A is the union of all 

-open sets contained in A and is denoted by Int(A). A set A is called a -regular set [7] if it is both -open and -closed. 

The --closure [7] of a subset A, denoted by Cl(A), is the set of all x  X such that Cl(U)  A   for every U  O(X, 

x). A subset A is called --closed [7] if A = Cl(A). By [7], it is proved that, for a subset A, Cl(A) is the intersection of all 

--closed sets containing A. The complement of a --closed set is called a --open set. In [3], the authors introduced 

the notion of -closed spaces and investigated its fundamental properties. In this paper, we investigate some more 
properties of this type of closed spaces via grills. 

2. GRILLS: ()-ADHERENCE AND ()-CONVERGENCE 

we shall define the ()-adherence and ()-convergence of a grill, and develop the concept to some extent so that the 
results we derive here may support our subsequent deliberations. 

Definition 2.1. [6] A grill G on a topological space X is defined to be a collection of nonempty subsets of X such that 

(a) A  G and A  B  X  B  G and 

(b) A, B  X and A  B  G  A  G or B  G. 

Definition 2.2. A grill G on a topological space X is said to be: 

(a) ()-adhere at x  X if for each U  O(X, x) and each G  G, ClU ∩ G  . 

(b) ()-converge to a point x  X if for each U  O(X, x), there is some G  G, such that G  Cl(U). 

Remark 2.3. A grill G is ()-convergent to a point x  X if and only if G contains the collection {Cl(U) : U  O(X, x)}. 

Definition 2.4. A filter F on a topological space X is said to ()-adhere at x  X (()-converge to x  X) if for each F  

F and each U  O(X, x), F  Cl(U)   (resp., to each U  O(X, x), there corresponds F  F such that F  Cl(U)). 

Definition 2.5. [8] If G is a grill (or a filter) on a topological space X, then the section of G, denoted by secG, is given by, 

secG = {A  X : A  G   for all G  G}. 

Theorem 2.6. [8] Let X be a topological space. Then we have 

(a) For any grill (filter) G on X, secG is a filter (resp., grill) on X. 

(b) If F and G are respectively a filter and a grill on X with F  G, then there is an ultrafilter U on X such that F  U  

G. 

Theorem 2.7. If a grill G on a topological space X, ()-adheres at some point x  X, then G is ()-converges to x. 

Proof. Let a grill G on X, ()-adheres at some point x  X. Then for each U  O(X, x) and each G  G, Cl(U) ∩ G   

so that Cl(U)  secG for each U  O(X, x), and hence X \ Cl(U)  G. Then Cl(U)  G (as G is a grill and X  G) for each 

U  O(X). Hence G must ()-converge to x. 

The following Example shows that a ()-convergent grill need not ()-adhere at any 

point of the space even if the space is finite. 

Example 2.8. Let X = {a, b, c},  = {X, , {b}, {c}, {b, c}, {a, c}}. Then (X, ) is a topological space such that O(X) = . 

Let  

G = {{b}, {c}, {a, b}, {b, c}, {a, c}, X} 

Then the grill G is ()-convergent but not ()-adheres. 

Definition 2.9. Let X be a topological space. Then for any x  X, we adopt the following notation: 

G ((), x) = {A  X : x  Cl(A)}, 
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secG((), x) = {A  X : A ∩ G  , for all G  G((), x)}. 

 

Theorem 2.10. A grill G on a topological space X, ()-adheres to a point x of X if and only if G  secG((), x). 

Proof. A grill G on a topological space X, ()-adheres to a point x of X, we have Cl(U)  G   for all U  O(X, x) and all 

G  G; hence x  Cl(G) for all G  G. Then G  G((), x), for all G  G; hence G  G((), x). Conversely, let G  G((), 

x). Then for all G  G, Cl(U)  G  , so that for all U  O(X, x) and for all G  G, Cl(U)  G  . Hence G ()-adheres 

at x. 

Theorem 2.11. A grill G on a topological space X, ()-convergent to a point x of X if and only if secG((), x)  G. 

Proof. Let G be a grill on a topological space X, ()-convergent to a point x  X. Then for each U  O(X, x) there exists 

G  G such that G  Cl(U), and hence Cl(U)  G for each U  O(X, x). Now, B  secG((), x)  X \ B  G((), x)  x 

 Cl(X \ B)  there exists U  O(X, x) such that Cl(U)  (X \ B) =   Cl(U)  B, where U  O(X, x)  B  G. 

Conversely, let if possible, G not to ()-converge to x. Then for some U  O(X, x), Cl(U)  G and hence Cl(U)  

secG((), x). Thus for some A  G((), x), A  Cl(U) = . But A  G((), x)  x  Cl(A)  Cl(A)  U  . 

3. -CLOSEDNESS AND GRILLS 

As proposed earlier, in this section we investigate -closedness of a topological space in terms of grills. We begin by 

recalling the definition of -closedness from. 

Definition 3.1. [3] A nonempty subset A of a topological space X is called -closed relative to X if for every cover U of 

A by -open sets of X, there exists a finite subset U0 of U such that A  {ClU : U  U0}. If, in addition, A = X, then X is 

called a -closed space. 

Theorem 3.2. For a topological space X, the following statements are equivalent: 

(a) X is -closed; 

(b) Every maximal filter base ()-converges to some point of X; 

(c) Every filter base ()-adhere to some point of X; 

(d) For every family {V :   I} of -closed sets that {V :   I} = , there exists a finite subset I0 of I such that 

{Int(V) :   I0} = . 

Proof. (a)  (b): Let F be a maximal filter base on X. Suppose that F does not -converge to any point of X. Since F is 

maximal, F does not --accumulate at any point of X. For each x  X, there exist Fx  F and Vx  O(X, x) such that 

Cl(Vx)  Fx = . The family {Vx : x  X} is a cover of X by -open sets of X. By (a), there exists a finite number of points x1, 

x2, ..., xn of X such that X = {Cl(Vx
i
) : i = 1, 2, ..., n}. Since F is a filter base on X, there exists F0  F such that F0  

{Fx i
: i = 1, 2, ..., n}. Therefore, we obtain F0 = . This is a contradiction. 

(b)  (c): Let F be any filter base on X. Then, there exists a maximal filter base F0 such that F  F0. By (b), F0 --

converges to some point x  X. For every F  F and every V  O(X, x), there exists F0  F0 such that F0  Cl(V); hence 

  F0  F  Cl(V)  F. This shows that F --accumulates at x. 

(c)  (d): Let {V :   I} be any family of -closed subsets of X such that {V :   I} = . Let (I) denote the ideal of all 

finite subsets of A. Assume that {Int(V) :   I} =  for every I  (I). Then, the family F = {I Int(V) : I  (I)} is a 

filter base on X. By (c), F --accumulates at some point x  X. Since {X \ V:   I} is a cover of X, x  X \ V 0
for some 

0  I. Therefore, we obtain X \ V 0
 O(X, x), Int(V 0

)  F and Cl(X \ V 0
)  Int(V 0

) = , which is a contradiction. 

(d)  (a): Let {V :   I} be a cover of X by -open sets of X. Then {X \ V :   I} is a family of -closed subsets of X such 

that {X \ V :   I} = . By (d), there exists a finite subset I0 of I such that {Int(X \ V) :   I} = ; hence X = {Cl(V) : 

  I0}. This shows that X is -closed. 

Theorem 3.3. A topological space X is -closed if and only if every grill on X is ()-convergent in X. 

Proof. Let G be any grill on a -closed space X. Then by Theorem 2.6(a), secG is a filter on X. Let B  secG, then X \ B  

G and hence B  G (as G is a grill). Thus secG  G. Then by Theorem 2.6(b), there exists an ultrafilter U on X such that 

secG  U  G. Now as X is -closed, in view of Theorem 3.2, the ultrafilter U is ()-convergent to some point x  X. Then 

for each U  O(X, x), there exists F  U such that F  Cl(U). Consequently, Cl(U)  U  G, That is Cl(U)  G, for each 
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U  O(X, x). Hence G is ()-convergent to x. Conversely, let every grill on X be ()-convergent to some point of X. By 

virtue of Theorem 3.2 it is enough to show that every ultrafilter on X is ()-converges in X, which is immediate from the 
fact that an ultrafilter on X is also a grill on X. 

Theorem 3.4. A topological space X is -closed relative to X if and only if every grill G on X with A  G, ()-converges 

to a point in A. 

Proof. Let A be -closed relative to X and G a grill on X satisfying A  G such that G does not ()-converge to any a  A. 

Then to each a  A, there corresponds some Ua  O(X, a) such that Cl(Ua)  G. Now {Ua : a  A} is a cover of A by -

open sets of X. Then A  n
i ia )U(Cl1   = U (say) for some positive integer n. Since G is a grill, U  G; hence A  G, which 

is a contradiction. Conversely, let A be not -closed relative to X. Then for some cover U = {U :   I} of A by -open sets 

of X, F = {A \ I
0
Cl(U) : I0 is finite subset of I} is a filterbase on X. Then the family F can be extended to an ultrafilter 

F* on X. Then F* is a grill on X with A  F* (as each F of F is a subset of A). Now for each x  A, there must exists   I 

such that x  U, as U is a cover of A. Then for any G  F*, G  (A \ Cl(U))  , so that G  Cl(U) for all G  G. Hence 

F* cannot ()-converge to any point of A. The contradiction proves the desired result. 

Theorem 3.5. If X is any topological space such that every grill G on X with the property that  n
i i )G(Cl1    for every 

finite subfamily {G1, G2, ... , Gn} of G, ()-adheres in X, then X is a -closed space. 

Proof. Let U be an ultrafilter on X. Then U is a grill on X and also for each finite subcollection {U1, U2, ... , Un} of U, 

n
i i )U(Cl1    n

i iU1  , so that U is a grill on X with the given condition. Hence by hypothesis, U, ()-adheres. 

Consequently, by Theorem 3.2, X is -closed. 

Theorem 3.6. [7] For any A  X, Cl(A) = {ClU : A  U  O(X)}. 

Definition 3.7. A grill G on a topological space X is said to be: 

(a) ()-linked if for any two members A, B  G, Cl(A)  Cl(B)  , 

(b) ()-conjoint if for every finite subfamily A1, A2, ... , An of G, Int(n
i i )A(Cl1   . 

It is clear that every ()-conjoint grill is ()-linked. The following Example shows that the converse is need not be true in 
general. 

Example 3.8. Let X = {a, b, c},  = {X, , {a}, {b}, {a, b}}. Then (X, ) is a topological space such that O(X) = {X, , {a}, 

{b}, {a, b}, {a, c}, {b, c}}. Let  

G = {{c}, {b, c}, {a, c}, X}. 

Then G is a grill on X. For any A  G, we have 

Cl{c} = {c}, Cl{b, c} = {b, c}, Cl{a, c} = {a, c} and ClX = X. It can then be verified that the grill G is ()-linked but not 

()-conjoint. 

Theorem 3.9. In a -closed space X, every ()-conjoint grill ()-adheres in X. 

Proof. Consider any ()-conjoint grill G on a -closed space X. We first note from Theorem 3.5 that for A  X, Cl(A) is 

-closed (as an arbitrary intersection of -closed sets is -closed). Thus {Cl(A) : A  G} is a collection of -closed sets in 

X such that Int(n
i i )A(Cl1    for any finite subcollection A1, A2, ... , An of G. Then Int(n

i i )A(Cl1    for any finite 

subcollection A1, A2, ... , An of G. Thus by Theorem 3.2, ∩I{Cl(A) : A  G}  , That is there exists x  X such that x  

Cl(A) for all A  G. Hence G  G((), x) so that by Theorem 2.10, G, ()-adheres at x  X. 

Definition 3.10. A subset A of a topological space X is called -regular open if A = Int(Cl(A)). The complement a -

regular open set is called a -regular closed set. 

Definition 3.11. A topological space X is called -almost regular if for each x  X and each -regular open set V in X 

with x  V, there is a -regular open set U in X such that x  U  Cl(U)  V. 

Theorem 3.12. In a -almost regular -closed space X, every grill G on X with the property 

n
i i )G(Cl1    for every finite subfamily {G1, G2, ... ,Gn} of G, ()-adheres in X. 
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Proof. Let X be a -almost regular -closed space and G = {G :   I} a grill on X with the property that ∩I 0
Cl(G)  

 for every finite subset I0 of I. We consider F = {∩I
0
Cl(G) : I0 is a finite subfamily of I}. Then F is a filterbase on X. By 

the -closedness of X, F, ()-adheres at some x  X, that is, x  Cl(Cl(G)) for all G  F, that is, F  ((), x). Hence 

by Theorem 2.10, F ()-adheres at x  X. 

Corollary 3.13. In a -almost regular space X, the following statements are equivalent: 

(a) Every grill G on X with the property that n
i i )G(Cl1    for every finite subfamily {G1, G2, ... , Gn} of G, ()-

adheres in X. 

(b) X is -closed. 

(c) Every ()-conjugate grill ()-adheres in X. 

Theorem 3.14. Every grill G on a topological space X with the property that ∩{Cl(G) : G  G0}   for every finite 

subsets G0 of G, ()-adheres in X if and only if for every family F of subsets of X for which the family {Cl(F) : F  F} has 

the finite intersection property, we have ∩{Cl(F) : F  G}  . 

Proof. Let every grill on a topological space X satisfying the given condition, ()-adhere in X, and suppose that F is a 

family of subsets of X such that the family F* = {Cl(F) : F  F} has the finite intersection property. Let U be the collection 

of all those families G of subsets of X for which G* = {Cl(G) : G  G} has the finite intersection property and F  G. Then 

F  U is a partially ordered set under set inclusion in which every chain clearly has an upper bound. By Zorn’s lemma, F is 

then contained in a maximal family U*  U. It is easy to verify that U* is a grill with the stipulated property. Hence 

∩{Cl(F) : F  F}  ∩{Cl(U) : U  U*}  . 

Conversely, if F is a grill on X with the given property, then for every finite subfamily F0 of F, ∩{Cl(F) : F  F}  . So, by 

hypothesis, ∩{Cl(F) : F  F}  . Hence F, ()-adheres in X. 

Definition 3.15. A topological space X is called ()-linkage -closed if every ()-linked grill on X, ()-adheres. 

Theorem 3.16. Every ()-linkage -closed space is -closed. 

Proof. The proof is clear. 

Proposition 3.17. [7] Let A be a subset of a topological space (X, ). Then: 

(a) If A  O(X), then Cl(A) = Cl(A). 

(b) If A is -regular, then A is --closed 

Theorem 3.18. In the class of -almost regular spaces, the concept of -closedness and ()-linkage -closedness 

become identical. 

Proof. In view of Theorem 3.16, it is enough to show that a -almost regular -closed space is ()-linkage -closed. Let G 

be any ()-linked grill on a -almost regular -closed space X such that G does not ()-adhere in X. Then for each x  X, 

there exists Gx  G such that x  Cl(Gx) = Cl(Cl(Gx)). Then there exists Ux  O(X, x) such that Cl(Ux)  Cl(Gx) = 

, which gives Cl(Ux)  Cl(Gx) =  by Proposition 3.17, Cl(U) = Cl(U)). Since Cl(Gx)  G and G is a ()-linked grill 

on X, Cl(Ux) = Cl(Ux)  G. Now, {Ux : x  X} is a cover of X by -open sets of X. So by -closedness of X, X = 

{Cl(Ux i
) : i = 1, 2, ... , n}, for a finite subset {x1, x2, ... , xn} of X. It is then follows that X  G (since Cl(Ux i

)  G  for i = 1, 

2, ... , n), which is a contradiction. Hence G must ()-adhere in X, proving X to be ()-linkage -closed. 

Definition 3.19. [3] A topological space X is said to be -compact if every cover U of X by -open sets of X has a finite 

subcover. 

Definition 3.20. A topological space X is ()-regular if every grill on X which ()-converges must -converge (not 

necessarily to the same point), where -convergence of a grill is defined in the usual way. That is a grill G on X is said to -

converge to x  X if O(X, x)  G. 

Theorem 3.21. A topological space X is -compact if and only if every grill -converges. 

Proof. Let G be a grill on a -compact space such that G does not -converge to any point x  X. Then for each x  X, 

there exists Ux  O(X, x) with (*) Ux  G. As {Ux : x  X} is a cover of the -compact space X by -open sets, there exist 

finitely many points x1, x2, ... , xn in X such that X = n
i ix

U1 . Since X  G for some i, (1 ≤ i ≤ n), Ux i
 G, which goes against 
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(*). Conversely, let every grill on X -converge and if possible, let X be not -compact. Then there exists a cover U of X by 

-open sets of X having no finite subcover. Then 

F = {X \ U0 : U0 is a finite subcollection of U} 

is a filterbase on X. Then F is contained in an ultrafilter G, and then G -converges to some point x of X. Then for some U 

 U, x  U, and hence U  G. But X \ U  F  U. Thus U and X \ U both belong to U, which is a filter, so giving a 

contradiction. 

Theorem 3.22. A -compact space X is -closed, while the converse is also true if X is ()-regular. 

Proof. The proof is clear. 

Definition 3.23. [2] A topological space (X, ) is said to be -regular if for any closed set F  X and any point x  X \ F, 

there exists disjoint -open sets U and V such that x  U and F  V. 

Theorem 3.24. [2] A topological space X is -regular if and only if for each x  X and each U  O(X, x), there exists V 

 O(X, x) such that Cl(V)  U. 

Theorem 3.25. Every -regular space is ()-regular. 

Proof. Let G be a grill on a -regular X, ()-converging to a point x of X. For each U  O(X, x), there exists, by -

regularity of X, a V  O(X, x) such that Cl(V)  U. By hypothesis, Cl(V)  G. Hence G -converges to x, proving X to be 

()-regular. 

Example 3.26. Let X = {a, b, c},  = {X, , {a}, {b}, {a, b}, {b, c}}. Then (X, ) is a topological space such that O(X) = . 

Clearly X is -compact (X being a finite set). Hence by Theorem 3.21, every grill on X must -converge in X. Thus X is 

()-regular. But it is easy to check that X is not -regular. 

Theorem 3.27. If a topological space X is -closed -regular, then X is -compact. 

Proof. Let X be a -closed and -regular space. Let {V :   I} be any open cover of X. For each x  X, there exists an 

(x)  I such that x  V(x). Since X is -regular, there exists U(x)  O(X, x) such that U(x)  Cl(U(x))  V(x). Then, {U(x); 

x  X} is a -open cover of the -closed space X and hence there exists a finite amount of points, say, x1, x2, ... , xn such 

that X =  n
i 1 Cl(U(xi)) =  n

i 1 V(x
i

). This shows that X is compact. 

4. SETS WHICH ARE -CLOSED RELATIVE TO A SPACE 

Theorem 4.1. For a topological space X, the following statements are equivalent: 

(a) A is -closed relative to X; 

(b) Every maximal filter base ()-converges to some point of X; 

(c) Every filter base ()-adhere to some point of X; 

(d) For every family {V :   I} of -closed sets such that ∩{V :   I} ∩ A = , there exists a finite subset I0 of I such 

that {Int(V) :   I0} ∩ A = . 

Proof. The proof is clear. 

Theorem 4.2. If X is a -closed space, then every cover of X by --open set has a finite subcover. 

Proof. Let {V :   I} be any cover of X by --open subsets of X. For each x  X, there exists (x)  I such that x  V(x) is 

--open, there exists Vx  O(X, x) such that Vx  Cl(Vx)  V(x). The family {Vx : x  X} is a -open cover of X. Since X is 

-closed, there exists a finite number of points, say, x1, x2, ... , xn such that X =  n
i 1 Cl(Vx

i
). Therefore, we obtain that X = 

 n
i 1 Vx i

. 

Theorem 4.3. Let A, B be subsets of a topological space X. If A is --closed and B is -closed relative to X, then A ∩ 

B is -closed relative to X. 

Proof. Let {V :   I} be any cover of A  B by -open subsets of X. Since X \ A is --open, for each x  B \ A there 

exists Wx  O(X, x) such that Cl(Wx)  X \ A. The family {Wx : x  B \ A}  {V :   I} is a cover of B by -open sets of X. 

Since B is -closed relative to X, there exists a finite number of points, say, x1, x2, ... , xn in B \ A and a finite subset I0 of I 

such that B   n
i 1 Cl(Wx i

)  I
0
Cl(V). Since Cl(Wx

i
) ∩ A =  for each i, we obtain that A  B  {Cl(V) :   I0}. 

This shows that A  B is -closed relative to X. 
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Corollary 4.4. If K is --closed of a -closed space X, then K is -closed relative to X. 

Definition 4.5. [4] A topological space X is called -connected if X cannot be expressed as the union of two disjoint -

open sets. Otherwise, X is -disconnected. 

Theorem 4.6. Let X be a -disconnected space. Then X is -closed if and only if every -regular subset of X is -

closed relative to X. 

Proof. Necessity: Every -regular set is --closed by Proposition 3.17. Since X is -closed, the proof is completed by 

Corellary 4.4. 

Sufficiency: Let {V :   I} be any cover of X by -open subsets of X. Since X is -disconnected, there exists a proper -

regular subset A of X. By our hypothesis, A and X \ A are -closed relative to X. There exist finite subsets A1 and A2 of A 

such that A  A
1
Cl(V), X \ A  A

2
Cl(V). Therefore, we obtain that X = {Cl(V) :   A1  A2}. 

Theorem 4.7. If there exists a proper -regular subset A of a topological space X such that A and X \ A are -closed 

relative to X, then X is -closed. 

Proof. This proof is similar to the Theorem 4.6 and hence omitted. 

Definition 4.8. A function f : (X, )  (Y, ) is called -irresolute [7] if f
 -1

(V) is -open in X for every -open subset V of Y. 

Lemma 4.9. [7] A function f : (X, )  (Y, ) is -irresolute if and only if for each subset A of X, f(Cl(A))  Cl(f(A)). 

Theorem 4.10. If a function f : (X, )  (Y, ) is -irresolute surjection and K is -closed relative to X, then f(K) is -

closed relative to Y. 

Proof. Let {V :   I} be any cover of  f(K) by -open subsets of Y. Since f is -irresolute, {f
 -1

(V) :   I} is a cover of K 

by -open subsets of X, where K is -closed relative to X. Therefore, there exists a finite subset I0 of I such that  K  

I
0
Cl(f

 -1
(V)). Since f is -irresolute surjective, by Lemma 4.9, we have 

f(K)  I
0
f(Cl(f

 -1
(V)))  I

0
Cl(V). 

Corollary 4.11. If a function f : (X, )  (Y, ) is -irresolute surjection and X is -closed, then Y is -closed. 
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