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The aim of the research is to apply fibrewise multi-emisssions of the paramount 

separation axioms of normally topology namely fibrewise multi-T0. spaces, 

fibrewise multi-T1 spaces, fibrewise multi-R0 spaces, fibrewise multi-

Hausdorff spaces, fibrewise multi-functionally Hausdorff spaces, fibrewise 

multi-regular spaces, fibrewise multi-completely regular spaces, fibrewise 

multi-normal spaces and fibrewise multi-functionally normal spaces. Also we 

give many score regarding it. 

  

 

1.Introduction  

         We beginning our work with the concept of category of Fibrewise (br𝒊𝒆fly, 𝔽.𝕎.) sets on a 
known set, named the base set. If the base set is stated with D then  𝔽.𝕎. set on D apply of a set E with 
a function X is X: E → 𝑫, named the projection (briefly, project.). For every point d of D the fibre on 
d is the subset 𝑬𝒅 = 𝑿−𝟏(d) of E; fibres will be empty let we do not require X to be surjection, also for 
every subset 𝑫∗ o𝒇 D we regard 𝑬𝑫∗ = 𝑿−𝟏(𝑫∗) as a 𝔽.𝕎. set on 𝑫∗ with the project. determined by 
X. A multi- function [2] Ω of a set E in to F is a correspondence such that Ω (𝒆) is a nonempty subset 
of F for every e ∈ E. We will denote such a multi- function by Ω : E → F . For a multi- function Ω, the 
upper and lower inverse set of a set K of F, will be denoted by Ω+(K) and Ω−(K) respectively that is 
Ω+(K) = {𝒆 ∈ E : Ω(𝒆) ⊆ K} and Ω−(K) = {𝒆 ∈ E: Ω(𝒆) ∩ V ≠ ∅ }. 
Definition 1.1. [8] Suppose that E and F are 𝔽.𝕎. sets on D, with project. XE: E →  D and YF: F →  D, 

respectively, a function Ω: E →  F is named to be 𝔽.𝕎. if YFOΩ =  XE, that is to say if Ω(Xd) ⊂ Fd for 

every point d of D. 

It should be noted that a 𝔽.𝕎. function Ω: E → F on D determines, by restriction, 𝔽.𝕎. function ΩD*: 

ED*→ FD* on D∗ for every D∗ of D. 

Let {Er} be an indexed family of 𝔽.𝕎. sets on D the 𝔽.𝕎. product ∏D Er is stated, as a 𝔽.𝕎. set on D, 

and comes included with the family of 𝔽.𝕎. projection πr : ∏D Er → Er. Specifically, the 𝔽.𝕎. 

product is stated as the subset of the normally product ∏ Er where in the fibres are the products of 

the relevant fibers of the strain Er. The 𝔽.𝕎. product is recognized with the following Cartesian 

property: for every 𝔽.𝕎. set E on D the 𝔽.𝕎. functions Ω: E → ∏r Er correspond exactly to the 

families of 𝔽.𝕎. functions {Ωr}, with Ωr = πroΩ: E → Er. For example if Er = E for every index r 

the diagonal ∆ : E → ∏D E, is stated so that πro∆ = idE for every r. If {Er} is as before, the 𝔽.𝕎. 

coproduct ∐DEr is with stated, as 𝔽.𝕎. set on D, and comes included with the family of F. W. 

insertions σ: Er → ∐D Er, specifically the 𝔽.𝕎. coproduct synchronize, as a set, with the normally 

coproduct (saparated union), the fibres being the coproducts of the relevant fipers of the 

summands Er. The 𝔽.𝕎. coproduct is recognized by the following Cartesian property, for every 

𝔽.𝕎. set E on D the 𝔽.𝕎. functions φ: ∐DEr → E correspond exactly to the families of 𝔽.𝕎. 

functions {φr}, where in φr = φoσr: Er → E. For example, if Er = E for every index r the 

codiagonal ∇∶  ∐DE → E is stated so that, ∇ oσr = idE for every r. The notation E×D F is used for 

the 𝔽.𝕎. product in the case of the family {E, F}, of two 𝔽.𝕎. sets and similarity for finite 
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families generally. As well as, we builte on some of the result in [1,6,7-18]. For other concepts or 

informataon that are undefined here we follow nearly I.M.James [8], R.Engelking [7] and N. 

Bourbaki [6].  

Recall that [8] Let D be topological space, the 𝔽.𝕎. topology space (briefly, 𝔽.𝕎.T.S.) on a 𝔽.𝕎. 

set E on D, mean any topology on E for that the project. X is continuous. 

Remark 1.1. [8] 

(a) The smaller topology is the topology trace with X, where in the open sets of E are exactly the 

pre image of the open sets of D, this is named the 𝔽.𝕎. indiscrete topology. 

(b) The 𝔽.𝕎.T.S. on D is stated to be a 𝔽.𝕎. set on D with a 𝔽.𝕎.T.S. 

We regard the topology product D × T, for any topological space T, as a 𝔽.𝕎.T.S. on D using the 

category of first projection. The equivalences in the category of 𝔽.𝕎.T.S. are named 𝔽.𝕎.T. 

equivalences. If E is 𝔽.𝕎.T. equivalent to D × T, for some topological space T, we say that E is 

trivial, as a 𝔽.𝕎.T.S. on D. In 𝔽.𝕎.T. the form neighborhood (briefly, ηℙ𝕕) is used in exactly in the 

same sense as it is in normally topology, but the forms 𝔽.𝕎. basic may ned some illustration, so let E 

be 𝔽.𝕎.T.S. on D, if e is a point of Ed where in d ∈ D, appear a family N(e) of ηℙ𝕕 of e in E as 𝔽.𝕎. 

basic if as every ηℙ𝕕 H of e we have Ew ∩ K ⊂ H, for some element K of N(e) and ηℙ𝕕 W of d in D. 

As exampe, in the case of the topological product D × T, where in T is a topological spaces, the 

family of Cartesian products D × N(t), where in N(t) runs through the ηℙ𝕕s of t, is 𝔽.𝕎. basic for (d, 

t). 

Definition 1.2. [8] The F.W. functions Ω: E→ F; E and F are 𝔽.𝕎. spaces on D is named: 

(a) continuous (briefly, cont.) if every e ∈ Ed; d ∈ D, the Ω−1(e) is open set of e. 

(b) open if for every e∈ Ed, d ∈ D, the direct image of every open set of e is an open set of 

Ω(e). 
Definition 1.3. [8] The 𝔽.𝕎.T.S. E on D is named 𝔽.𝕎. closed (resp., open) if the project. X is 

closed (resp., open) functions. 

Definition 1.4. [5] Let Ω: E → F be a multi-function. Then Ω is upper cont. (briefly, U. cont.) iff 

Ω+(K) open in E for all V open in F. That is, Ω+(K) = {x ∈ E: Ω(x) ⊆ K}. K ⊆ F. 

Definition 1.5. [5] Let Ω: E → F be a multi-function. Then Ω is lower cont. (briefly, L. cont.) iff 

Ω−(K) open in E for all K open in F. That is, Ω−(K) = {e ∈ E: Ω(e) ∩ K ≠ ∅ }. K ⊆ F 

Let Ω: E → F be a multi-function. Then Ω is multi cont. (briefly, M. cont.) iff it is U. cont. and L. 

cont.  

 

2. Fibrewise Multi-Compact and Locally Multi-Compact Spaces 

In this segment we study 𝔽.𝕎. multi-compact and 𝔽.𝕎. locally multi-compact spaces as a 

generalizations of well-known ideas multi-compact and locally multi-compact topological spaces.  

 

Definition 2.1. The function Ω ∶ E ⟶ F is named upper proper (briefly, U. 𝓅.). If it is upper 

continuous, closed and ∀ f ∈ F, Ω−1(f) is compact set . 

 

Definition 2.2. The function Ω ∶ E ⟶ F is named lower proper (briefly, L. 𝓅.). If it is lower 

continuous, closed and ∀ f ∈ F, Ω−1(f) is compact set.  

  

The function Ω ∶ E ⟶ F is named multi-proper (briefly, M. 𝓅.). If it is U. 𝓅 and L. 𝓅.. 
 

For example, Assume that (ℝ, τ) where in τ is the topology with basic whose members are of the 

form (a, b) and (a, b) − ℕ, ℕ = {1\n; n ∈ ℤ+} and E = ℕ. Define Ω ∶ (ℝ, τ) → (ℝ, τ) by Ω (e) = e, so 

Ω is M. 𝓅. function.  

A function Ω ∶ E ⟶ Y is a 𝔽.𝕎. and M. 𝓅. function, so Ω is named 𝔽.𝕎. M. 𝓅. function.  
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Definition 2.3. The 𝔽.𝕎. T. S. E on D is named a 𝔽.𝕎. U. ℂ𝕆. , when the projection function X is U. 𝓅..  
  

Definition 2.4. The 𝔽.𝕎. T. S. E on D is named a 𝔽.𝕎. L. ℂ𝕆. , when the projection function X is L. 𝓅..  
 

The 𝔽.𝕎. T. S. E on D is named a 𝔽.𝕎. M. ℂ𝕆. if it is 𝔽.𝕎. U. ℂ𝕆. and 𝔽.𝕎. L. ℂ𝕆..  
 

Remark 2.1. 

(a) Every 𝔽.𝕎. M. ℂ𝕆. space is 𝔽.𝕎. U. ℂ𝕆. space, but the convers is not true. 

(b) Every 𝔽.𝕎. M. ℂ𝕆. space is 𝔽.𝕎. L. ℂ𝕆. space, but the convers is not true. 

(c) The 𝔽.𝕎. U. ℂ𝕆. space and 𝔽.𝕎. L. ℂ𝕆. space are independence. 

 
 

 

 

 

 

 
 
Example 2.1.  

(a) Let E = {a, b, c} , τ
(E)

 = discrete topology. D = {1,2}, ρ = {∅, D, {1}}. Define the project. 
X: (E, τ

(E)
) → (D, ρ) by         X(a) = X(b) = X(c) = {1} 

1.  E is 𝔽.𝕎. U. ℂ𝕆.S., 𝔽.𝕎. L. ℂ𝕆., and 𝔽.𝕎. M. ℂ𝕆.S. 
2.  

(b) Let E = N , with the cofinite topology τ
cof

 and let D = {a, b, c} with the topology ρ =

{∅, D, {a}, {a, b}}. Define multi-function 

3. X ∶ (ℝ, τ) → (D, ρ ) by X(e) = {
{a} ;  e ≤ 0

{a, c} ;  e > 0
 

4.  E is 𝔽.𝕎. L. ℂ𝕆.S., but not 𝔽.𝕎. U. ℂ𝕆.S. and not 𝔽.𝕎. M. ℂ𝕆.S. 

5.  

(c) Let E = {a, b, c} , τ
(E)

= discrete topology and D = {a, b} with the topology ρ = {∅, D, {a}} . 

Define multi-function  

6. X ∶ (ℝ, τ) → (D, ρ ) by X(e) = {
{a} ;  e ≤ 0
∅ ;  e > 0

 

7.  E is 𝔽.𝕎. U. ℂ𝕆.S., but not 𝔽.𝕎. L. ℂ𝕆.S. and not 𝔽.𝕎. M. ℂ𝕆.S. 

8.   

(d) Let E = ℝ with the usual topology τ and D = {a, b, c} with the topologyρ = {∅, D, {a}} . 

Define multi-function  

9. X ∶ (ℝ, τ) → (D, ρ ) by X(e) = {

{a} ;  e < 0
{a, b} ;  e = 0

{c} ;  e > 0
 

10.  E is not 𝔽.𝕎. U. ℂ𝕆.S., not 𝔽.𝕎. L. ℂ𝕆.S. and not 𝔽.𝕎. M. ℂ𝕆.S. 

Proposition 2.1. The 𝔽.𝕎. T. S. E on D is 𝔽.𝕎. U. ℂ𝕆. (resp. , 𝔽.𝕎. L. ℂ𝕆. ) iff E is a 𝔽.𝕎. closed 
and every fibre of E is ℂ𝕆.. 

𝔽.𝕎. M. ℂ𝕆. Space  

𝔽.𝕎. U. ℂ𝕆. Space 

𝔽.𝕎. L. ℂ𝕆. Space 

= = 

Planned 2.1. 
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Proof. (⟹) Let E be a 𝔽.𝕎. U. ℂ𝕆. (resp. , 𝔽.𝕎. L. ℂ𝕆. ) space, so the projection function X: E → D 
is U. 𝓅. (resp. , L. 𝓅. ) function( i.e., X is a closed and for every d ∈ D, Ed is ℂ𝕆.., So E is an 
𝔽.𝕎. closed and all fibre of E is ℂ𝕆.. 

(⟸) Let E be 𝔽.𝕎. closed and all fibre d of D, Ed is ℂ𝕆., therefore the projection function 
X ∶ E → D is a closed and X is U. continuous (resp., L. continuous), and for every d ∈ D, Ed is ℂ𝕆.. So 
E is 𝔽.𝕎. U. ℂ𝕆. (resp. , F. W. L. CO. ).  

Corollary 2.1. The 𝔽.𝕎. T. S. E on D is 𝔽.𝕎. M. ℂ𝕆. iff E is a 𝔽.𝕎. closed and every fibre of E is 
ℂ𝕆. 

Proposition 2.2. Let E be a 𝔽.𝕎. T. S. on D. Then E is 𝔽.𝕎. U. ℂ𝕆. (resp. , 𝔽.𝕎. L. ℂ𝕆.) iff for 
every fibre Ed of E and every covering Γ of Ed by open sets of E there exists a ηℙ𝕕 W of d such 
that, a finite subfamily of Γ covers E𝒲.  

Proof. (⟹) Let E be a 𝔽.𝕎. U. ℂ𝕆. (resp𝔽.𝕎. L. ℂ𝕆. ) space, thus the projection function X: E →
D is U. 𝓅. (resp. , L. 𝓅. ) function, so that Ed is 𝔽.𝕎. ℂ𝕆. ) for every d ∈ D. Assume that Γ is a 
covering of Ed in open sets of E for every d ∈ D and let EW = ∪ Ed for all d ∈ 𝒲 . Since Ed is 
𝔽.𝕎. ℂ𝕆. for every d ∈ 𝒲 ∈ D and the union of 𝔽.𝕎. ℂ𝕆. sets is a 𝔽.𝕎. ℂ𝕆., but EW is a 𝔽.𝕎. ℂ𝕆.. 
So, there exists a ηℙ𝕕 W of d such that a finite subfamily of Γ covers EW. 

(⟸) Let E be 𝔽.𝕎. T. S. on D, thus the projection function X: E → D exist. T.P. X is 
U. 𝓅. (resp. , L. 𝓅. ) . So X is U. continuous (resp., L. continuous) and for all d ∈ D, Ed is ℱ. 𝒲. ℂ𝕆. )by 
taking Ed = EW. By Proposition (2.1), therefore X is closed. So, X is U. 𝓅. (resp. , L. 𝓅. ) and E is 
𝔽.𝕎. U. ℂ𝕆. (resp. , 𝔽.𝕎. L. ℂ𝕆. ).  

Corollary 2.2. Let E be a 𝔽.𝕎. T. S. on D. Then E is 𝔽.𝕎. M. ℂ𝕆. iff for every fibre Ed of E and 
every covering Γ of Ed by open sets of E there exists a ηℙ𝕕 W of d such that, a finite subfamily of 
Γ covers E𝒲.  

Proposition 2.3. Let Ω ∶ E ⟶ F be U. 𝓅. (resp. , L. 𝓅. ), closed 𝔽.𝕎. function, where in E and F are 
𝔽.𝕎. T. S. on D. If F is 𝔽.𝕎. U. ℂ𝕆. (resp. , 𝔽.𝕎. L. ℂ𝕆. ) then, so is E.  

Proof. Assume thatΩ ∶ E ⟶ F is U. 𝓅. (resp. , L. 𝓅. ), closed 𝔽.𝕎. function and F is 
F is 𝔽.𝕎. U. ℂ𝕆. (resp. , 𝔽.𝕎. L. ℂ𝕆. ) space i.e., the projection function XF: F → D is a 
U. 𝓅. (resp. , L. 𝓅. ). T.P. E is ℱ. 𝒲. U. ℂ𝕆. (resp. , ℱ. 𝒲. L. ℂ𝕆. ) space i.e., the projection function 
XE: E → D is U. 𝓅. (resp. , L. 𝓅. ). So, it is obvious that XE is U. continuous (resp., L. continuous), let H 
be a closed. subset of Xd̃, where d ∈ D. However, Ω is a closed, so Ω (H) is a closed subset of Fd. By 
XE is a closed, so XE(Ω (H)) is a closed in D. However E(Ω (H)) = (XEᴏ Ω)(H) = XE(H) is closed 
in D ,so XE is a closed. Let d ∈ D, since XE is U. 𝓅. (resp. , L. 𝓅. ), so Fd is ℂ𝕆. ). Now let {U𝒾: 𝒾 ∈ Λ} 
be a family of open sets of E such that, Fd ⊂  U𝒾∈ΛU𝒾 . If f ∈ Fd, subsistent a finite subset M(f) of Λ 
such that Ω−1(f) ⊂ ∪𝒾∈ℳ(𝒹) Ui. Because Ω is closed function, so by Proposition (2.2) subsistent a 
open set (𝒱)f of F such that f ∈ (𝒱)f and Ω−1((𝒱)f) ⊂ ∪𝒾∈ℳ(f) U𝒾. By Ff is ℂ𝕆., subsistent a finite 
subset K of Ff such that, Fd ⊂ ∪f∈K (𝒱)f. So Ω−1(Fd) ⊂∪f∈K Ω−1(𝒱)f ⊂∪f∈K∪𝒾∈ℳ(f)  𝒰i. Thus if 
ℳ =∪f∈K ℳ(f), then ℳ is a finite subset of Λ and Ω−1(Fd) ⊂ ∪𝒾∈ℳ Ui. Then Ω−1(Fd) =
Ω−1(XF

−1(d)) = (XFᴏΩ)−1(d) = XE
−1(d) = Ed and Ed ⊂ ∪𝒾∈ℳ U𝒾 , then Ed is a ℂ𝕆.. Therefore, XE is 

U. 𝓅. (resp. , L. 𝓅. ) and E is a 𝔽.𝕎. U. ℂ𝕆. (resp. , 𝔽.𝕎. L. ℂ𝕆. ). 
Corollary 2.3. Let Ω ∶ E ⟶ F be M. 𝓅., closed 𝔽.𝕎. function, where in E and F are 𝔽.𝕎. T. S. on D. 

If F is 𝔽.𝕎. M. ℂ𝕆.then, so is E.  
The category of 𝔽.𝕎. U. ℂ𝕆. (resp. , 𝔽.𝕎. L. ℂ𝕆. and 𝔽.𝕎. M. ℂ𝕆. ) spaces is finitely multiplicative 

as mentioned in:  
Proposition 2.4. Suppose that {Er} be a family of 𝔽.𝕎. U. ℂ𝕆. (resp. , 𝔽.𝕎. L. ℂ𝕆. ) spaces on D. 

Therefore after the 𝔽.𝕎. T. product E = ∏ Er,D  is 𝔽.𝕎. U. ℂ𝕆. (resp. , 𝔽.𝕎. L. ℂ𝕆. ) .  
Proof. Let {Er} and F are 𝔽.𝕎. T. S. on D. When E is 𝔽.𝕎. U. ℂ𝕆. (resp. , 𝔽.𝕎. L. ℂ𝕆. ) , so the 

projection function X × idF: E ×D F ≡ F is U. 𝓅. (resp. , L. 𝓅. ). When F is also 
𝔽.𝕎. U. ℂ𝕆. (resp. , 𝔽.𝕎. L. ℂ𝕆. ) , therefore is E ×𝔙 F by Proposition (2.3). 

Corollary 2.4. Suppose that {Er} be a family of 𝔽.𝕎. M. ℂ𝕆. spaces on D. Therefore after the 
𝔽.𝕎. T. product E = ∏ Er,D is 𝔽.𝕎. M. ℂ𝕆. .  

Proposition 2.5. Let E is 𝔽.𝕎. T. S. on D. Suppose that Ei is 𝔽.𝕎. U. ℂ𝕆. (resp. , 𝔽.𝕎. L. ℂ𝕆. ) for 
every member Ei of a finite covering of E. Then E is 𝔽.𝕎. U. ℂ𝕆. (resp. , 𝔽.𝕎. L. ℂ𝕆. ). 

Proof. Let E be a 𝔽.𝕎. T. S. on D. Currently, the projection function X ∶ E → D subsistent. T.P. X is 
U. 𝓅. (resp. , L. 𝓅. ). Currently, it is obvious that X is U. continuous (resp., L. continuous). Since E𝒾 is 
ℱ. 𝒲. U. ℂ𝕆. (resp. , ℱ. 𝒲. L. ℂ𝕆. ), then the projection function X𝒾: Ei → D is a closed. and for all 
d ∈ D, (Ei)d is ℂ𝕆. for every member E𝒾 of a finite covering of E Assume that H is a closed. subset 
of E, then X(H) =∪ Xi(Ei ∩ H) which is a finite union of closed sets and so X is a closed. Assume 
that d ∈ D, then Ed=∪ (E𝒾)d which is a finite union of ℂ𝕆. sets and so Ed is a ℂ𝕆..Thus, X is 
U. 𝓅. (resp. , L. 𝓅. ) and E is 𝔽.𝕎. U. ℂ𝕆. (resp. , 𝔽.𝕎. L. ℂ𝕆. ).  
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Corollary 2.5. Let E is 𝔽.𝕎. T. S. on D. Suppose that Ei is 𝔽.𝕎. M. ℂ𝕆. for every member Ei of a 
finite covering of E. Then E is 𝔽.𝕎. M. ℂ𝕆.. 

Proposition 2.6. Let E be 𝔽.𝕎. U. ℂ𝕆. (resp. , 𝔽.𝕎. L. ℂ𝕆. ) space on D. So ED∗  is 
𝔽.𝕎. U. ℂ𝕆. (resp. , 𝔽. 𝕎. L. ℂ𝕆. ) space on D∗ for every subspace D∗ of D.  

Proof. Suppose that E is 𝔽.𝕎. U. ℂ𝕆. (resp. , 𝔽.𝕎. L. ℂ𝕆. ) i.e., the projection function XE ∶ E → D 
is U. 𝓅. (resp. , L. 𝓅. ) To show that ED∗  is 𝔽.𝕎. U. ℂ𝕆. (resp. , 𝔽.𝕎. L. ℂ𝕆. ) space over D∗ i.e., the 
projection function XD∗ ∶ ED∗ → D∗ is U. 𝓅. (resp. , L. 𝓅. ) Currently, it is obvious that XD∗ is U. 
continuous(resp., L. continuous). Assume that H is a closed subset of E, then H ∩ ED∗ is a closed in a 
subspace ED∗ and XD∗(H ∩ ED∗) = X(H ∩ D∗) which is closed set in D∗, so X is a closed. Let d ∈ D, 
therefore (ED∗)d= Ed  ∩  ED∗ which is a ℂ𝕆. set in ED∗. So, XD∗ is U. 𝓅. (resp. , L. 𝓅. ) and ED∗ is 
𝔽.𝕎. U. ℂ𝕆. (resp. , 𝔽.𝕎. L. ℂ𝕆. ) over D∗.  

Corollary 2.6. Let E be 𝔽.𝕎. M. ℂ𝕆. space on D. So ED∗ is 𝔽.𝕎. M. ℂ𝕆. space on D∗ for every 
subspace D∗ of D.  
Proposition 2.7. Let E be a 𝔽.𝕎. T. S on D Suppose that (EDi

) is 𝔽.𝕎. U. ℂ𝕆. (resp. , 𝔽.𝕎. L. ℂ𝕆. ) on 
(Di) for every member (D𝒾) of an open covering of D. Then E is 𝔽.𝕎. U. ℂ𝕆. (resp. , 𝔽.𝕎. L. ℂ𝕆. ) 
on D. 

Proof. Suppose that E is 𝔽.𝕎. T. S. on D, then the projection function XE ∶ E → D subsistent. T.P. 
XE is U. 𝓅. (resp. , L. 𝓅. ). Currently, it is obvious that XE is U. continuous (resp., L. continuous). Since 
EDi

 is 𝔽.𝕎. U. ℂ𝕆. (resp. , 𝔽.𝕎. L. ℂ𝕆. ) on Di, therefore the projection function XD𝒾
∶ ED𝒾

→ D𝒾 is 
U. 𝓅. (resp. , L. 𝓅. )for all member Di of an open covering of D Assume that H is a closed subset of E, 
then we have XE(H) =∪ XDi(E)(EDi

∩ H) which is a union of closed sets and so XE is a closed 
Suppose that d ∈ D then Ed = ∪ (EDi

)d for every d = {d𝒾} ∈ D𝒾. Since EDi d
is ℂ𝕆. in ED𝒾

 and the 
union of ℂ𝕆. sets is ℂ𝕆., we have Ed is a ℂ𝕆.. So, XE is a U. 𝓅. (resp. , L. 𝓅. ) and E is a 
𝔽.𝕎. U. ℂ𝕆. (resp. , 𝔽.𝕎. L. ℂ𝕆. ). 

Corollary 2.7. Let E be a 𝔽.𝕎. T. S on D Suppose that (EDi
) is 𝔽.𝕎. M. ℂ𝕆. on (Di) for every 

member (D𝒾) of an open covering of D. Then E is 𝔽.𝕎. M. ℂ𝕆. on D. 
Actually, the final result is also holds for locally finite closed coverings, instead of open 

coverings.  
Proposition 2.8. A function Ω ∶ E ⟶ F is a 𝔽.𝕎. function, where E and F are 𝔽.𝕎. T. S. on D. If E 

is 𝔽.𝕎. U. ℂ𝕆. (resp. , 𝔽.𝕎. L. ℂ𝕆. ) and idE × Ω ∶ E ×D E → E ×D F is U. 𝓅. (resp. , L. 𝓅. ) and closed, 
then Ω is U. 𝓅. (resp. , L. 𝓅. ).  

Proof. Regard the commutative figure shown below 
 
 
 

 

 

 

 

 

 

If E is 𝔽.𝕎. U. ℂ𝕆. (resp. , 𝔽.𝕎. L. ℂ𝕆. ) , so π2 is U. 𝓅. (resp. , L. 𝓅. ). Condition idE × Ω is 
additionally U. 𝓅. (resp. , L. 𝓅. ) and closed then π2 ∘ (idE × Ω) = Ω ∘ π2 is U. 𝓅. (resp. , L. 𝓅. ), and so 
Ω itself isU. 𝓅. (resp. , L. 𝓅. ). 

Corollary 2.8. A function Ω ∶ E ⟶ F is a 𝔽.𝕎. function, where E and F are 𝔽.𝕎. T. S. on D. If E is 
𝔽.𝕎. M. ℂ𝕆. and idE × Ω ∶ E ×D E → E ×D F is M. 𝓅. and closed, then Ω is M. 𝓅.  

The next new concept in this segment is given by the following:  

Definition 2.5. A 𝔽.𝕎. T. S. E on D is named 𝔽.𝕎.locally upper compact (briefly, 𝔽.𝕎. ℒ. U. ℂ𝕆.) if 
for every point e of Ed, where in d ∈ D, subsistent a ηℙ𝕕 𝒲 of d and an open set U ⊂ E𝒲 of e such 
that, the closure of U in E𝒲 (i.e., E𝒲 ∩ Cl(U)) is 𝔽.𝕎. U. ℂ𝕆. on 𝒲. 

Planned 2.2. 

E ×D F E ×D E 

𝐸 𝐹 
Ω 

𝜋2 

𝑖𝑑E × Ω 

𝜋2 
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Definition 2.6. A 𝔽.𝕎. T. S. E on D is named 𝔽.𝕎.locally lower compact (briefly, 𝔽.𝕎. ℒ. L. ℂ𝕆.) if 
for every point e of Ed, where in d ∈ D, subsistent a ηℙ𝕕 𝒲 of d and an open set U ⊂ E𝒲 of e such 
that, the closure of U in E𝒲 (i.e., E𝒲 ∩ Cl(U)) is 𝔽.𝕎. L. ℂ𝕆. on 𝒲. 

The 𝔽.𝕎. T. S. E on D is named 𝔽.𝕎. locally multi-compact (briefly, 𝔽.𝕎. ℒ. M. ℂ𝕆.) if 
it is 𝔽.𝕎. ℒ. U. ℂ𝕆. and 𝔽.𝕎. ℒ. L. ℂ𝕆.. 

Remark 2.2. 

(a)  Every 𝔽.𝕎. ℒ. M. ℂ𝕆. space is 𝔽.𝕎. ℒ. U. ℂ𝕆. space, but the convers is not true. 

(b)  Every 𝔽.𝕎. ℒ. M. ℂ𝕆. space is 𝔽.𝕎. ℒ. L. ℂ𝕆. space, but the convers is not true. 

(c)  The 𝔽.𝕎. ℒ. U. ℂ𝕆. space and 𝔽.𝕎. ℒ. L. ℂ𝕆. space are independence. 

 

 

 

 

 

 

 

Example 2.2.  

(a)  Let E = {a, b, c} , τ
(E)

 = discrete topology. D = {1,2}, ρ = {∅, D, {1}}. Define the project. 
X: (E, τ

(E)
) → (D, ρ) by X(a) = X(b) = X(c) = {1}  

          E is 𝔽.𝕎. ℒ. U. ℂ𝕆.S., 𝔽.𝕎. ℒ. L. ℂ𝕆., and 𝔽.𝕎. ℒ. M. ℂ𝕆.S. 

(b)  Let E = ℝ ,with the usual topology τ and let D = {a, b, c} with the opology 

ρ = {∅, D, {a}, {a, b}}. Define multi-function 

        X ∶ (ℝ, τ) → (D, ρ ) by X(e) = {
{a} ;  e ≤ 0

{a, c} ;  e > 0
 

      E is 𝔽.𝕎. ℒ. L. ℂ𝕆.S., but not 𝔽.𝕎. ℒ. U. ℂ𝕆.S. and not 𝔽.𝕎. ℒ. M. ℂ𝕆.S. 

(c)  Let E is infinite set with τ
(E)

= discrete topology and D = {a, b} with the topology ρ =

{∅, D, {a}} . Define multi-function  

         X ∶ (ℝ, τ) → (D, ρ ) by X(e) = {
{a} ;  e ≤ 0
∅ ;  e > 0

 

       E is 𝔽.𝕎. ℒ. U. ℂ𝕆.S., but not 𝔽.𝕎. ℒ. L. ℂ𝕆.S. and not 𝔽.𝕎. ℒ. M. ℂ𝕆.S. 

  

(d)  Let E = ℝ with the usual topology τ and D = {a, b, c} with the opologyρ = {∅, D, {a}} . Define 

multi-function  

𝔽.𝕎. ℒ. M. ℂ𝕆. Space  

𝔽.𝕎. ℒ. U. ℂ𝕆. Space 

𝔽.𝕎. ℒ. L. ℂ𝕆. Space 

= = 

Planned 2.3. 



      Journal of Iraqi Al-Khwarizmi (JIKh)   Volume:7  Issue:2 Year: 2023   pages: 143-154   

149 
 

          X ∶ (ℝ, τ) → (D, ρ ) by X(e) = {

{a} ;  e < 0
{a, b} ;  e = 0

{c} ;  e > 0
 

      E is not 𝔽.𝕎. ℒ. U. ℂ𝕆.S., not 𝔽.𝕎. ℒ. L. ℂ𝕆.S. and not 𝔽.𝕎. ℒ. M. ℂ𝕆.S. 

Remark 2.3. 𝔽.𝕎. U. ℂ𝕆. (resp. , 𝔽.𝕎. L. ℂ𝕆. and 𝔽.𝕎. M. ℂ𝕆. ) spaces are necessarily 
𝔽.𝕎. ℒ. U. ℂ𝕆.(resp., 𝔽.𝕎. ℒ. L. ℂ𝕆. and 𝔽.𝕎. ℒ. M. ℂ𝕆. ) by taking 𝒲 = D and E𝒲 = E. , however the 
reverse does not need to be correct, as the following example.  

Example2.3. Assume that (E, τdis) where E is infinite set and τ is discrete topology, thus 
(E, στdis) 𝔽.𝕎. ℒ. M. ℂ𝕆. on ℝ, since for all e of Ed, where d ∈ D, subsistent a ηℙ𝕕 𝒲 of d and an 
open set U ⊂ E𝒲 of e such that, the closure of U in E𝒲 (i.e., E𝒲 ∩ Cl(U)) is ℱ. 𝒲. ℒ. M. ℂ𝕆. on ℝ. 
Also the product space D × T is 𝔽.𝕎. ℒ. U. ℂ𝕆.(resp., 𝔽.𝕎. ℒ. L. ℂ𝕆. and 𝔽.𝕎. ℒ. M. ℂ𝕆. ) on D,for all 
ℒ. U. ℂ𝕆.(resp., ℒ. L. ℂ𝕆. and ℒ. M. ℂ𝕆. )space T.  

Closed subspaces of 𝔽.𝕎. ℒ. U. (resp. , 𝔽.𝕎. ℒ. L. ) spaces are 𝔽.𝕎. ℒ. U. (resp. , 𝔽.𝕎. ℒ. L. ) spaces,. 
Actually we have. 

Proposition 2.9. A function Ω ∶ E ⟶ E∗ is a closed 𝔽.𝕎.embedding, where E and E* are 𝔽.𝕎. T. S. 
on D. E is 𝔽.𝕎. ℒ. U. ℂ𝕆.(resp., 𝔽.𝕎. ℒ. L. ℂ𝕆. )when E* is 𝔽.𝕎. ℒ. U. ℂ𝕆.(resp., 𝔽.𝕎. ℒ. L. ℂ𝕆. ). 

Proof. Let e of Ed, where d ∈ D, subsistent a ηℙ𝕕 𝒲 of d and an open set U ⊂ E𝒲 of e such that, 
the closure of U in E𝒲 (i.e., E𝒲 ∩ Cl(U)) is 𝔽.𝕎. ℒ. U. ℂ𝕆.(resp., 𝔽.𝕎. ℒ. L. ) on 𝒲 . Then Ω−1( U) ⊂
E𝒲 is an open set of e such that, the closure E𝒲 ∩ Cl(Ω−1(U)) = Ω−1(E𝒲

∗ ∩ Cl(U)) of Ω−1(U) in 
E𝒲 is 𝔽.𝕎. ℒ. U. ℂ𝕆.(resp., 𝔽.𝕎. ℒ. L. ) on 𝒲. Therefore, E is 𝔽.𝕎. ℒ. U. ℂ𝕆.(resp., 𝔽.𝕎. ℒ. L. ). 

Corollary 2.9. A function Ω ∶ E ⟶ E∗ is a closed 𝔽.𝕎. embedding, where E and E* are 𝔽.𝕎. T. S. 
on D. E is 𝔽.𝕎. ℒ. M. ℂ𝕆. when E* is 𝔽.𝕎. ℒ. M. ℂ𝕆. 

The category of 𝔽.𝕎. ℒ. U. ℂ𝕆.(resp., 𝔽.𝕎. ℒ. L. ). spaces is finitely multiplicative as mentioned in . .  

Proposition 2.10. Let {Ei} be finite family of 𝔽.𝕎. ℒ. U. ℂ𝕆.(resp., 𝔽.𝕎. ℒ. L. ) spaces onD. Then 
the 𝔽.𝕎. T. product E = ∏ (Ei)D  is 𝔽.𝕎. ℒ. U. ℂ𝕆.(resp., 𝔽.𝕎. ℒ. L. ).  

11. Proof. In the same way of proof of Proposition (4).  

Corollary 2.10. Let {Ei} be finite family of ℱ. 𝒲. ℒ. M. ℂ𝕆. spaces onD. Then the ℱ. 𝒲. T. 
product E = ∏ (Ei)D  is ℱ. 𝒲. ℒ. M. ℂ𝕆. 

 

3. Fibrewise Multi-Compact (resp., Locally Multi-Compact) Spaces and Some Fibrewise 
Multi-Separation Axioms 

 Now we give a series of results in which give relationships between F.W.multi-compactness (F.W. 
locally multi-compactness in some cases) and some F.W. multi-separation axioms which are discussed 
in [8,9]. 

Definition 3.1.[9] The 𝔽.𝕎.T.S. E on D is amed 𝔽.𝕎. upper Hausdorff (briefly, 𝔽.𝕎.U. Hausd.) if 
whenever e1,e2 ∈ Ed

+, where in d ∈ D and e1 ≠ e2, there exist separated open sets U1, U2 of e1, e2 in 
E. 

Definition 3.2.[9] The 𝔽.𝕎.T.S. E on D is amed 𝔽.𝕎. lower Hausdorff (briefly, 𝔽.𝕎.L. Hausd.) if 
whenever e1,e2 ∈ Ed

−, where in d ∈ D and e1 ≠ e2, there exist separated open sets U1, U2 of e1, e2 in 
E. 

The 𝔽.𝕎.T.S. E on D is amed 𝔽.𝕎. multi-Hausdorff (briefly, 𝔽.𝕎.M. Hausd.) if E is 𝔽.𝕎.U. 
Hausd. and 𝔽.𝕎.L. Hausd.. 
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Definition 3.3.[9] The 𝔽.𝕎.T.S. E on D is amed 𝔽.𝕎. upper regular (briefly, 𝔽.𝕎.U. re.) if for 
every point e ∈  Ed

+, where in d ∈ D, and for every open set V of e in E, there exists a ηℙ𝕕 W of d in 
D and an open set U of e in Ew

+  such that closure of U in is Ew
+ ancluding in V (i.e. Ew

+ ∩Cl(U) ⊂ V). 

Definition 3.4.[9] The 𝔽.𝕎.T.S. E on D is amed 𝔽.𝕎. lower regular (briefly, 𝔽.𝕎.L. re.) if for 
every point e ∈  Ed

−, where in d ∈ D, and for every open set V of e in E, there exists a ηℙ𝕕 W of d in 
D and an open set U of e in Ew

−  such that closure of U in is Ew
− ancluding in V (i.e. Ew

− ∩Cl(U) ⊂ V). 

The 𝔽.𝕎.T.S. on D is amed 𝔽.𝕎. multi- regular (briefly, 𝔽.𝕎.M. re.), if E is 𝔽.𝕎.U. re and 𝔽.𝕎 
L. re. 

Definition 3.5.[9] The 𝔽.𝕎.T.S. E on D is amed 𝔽.𝕎. upper normal (briefly, F.W.U. no.) if for 
every point d of D and every pair H, K of separated closed sets of E, there exist a ηℙ𝕕 W of d and a 
pair of separated open sets U, V of Ew

+  ∩ H, Ew
+  ∩ K in Ew

+ . 

Definition 3.6.[9] The 𝔽.𝕎.T.S. E on D is amed 𝔽.𝕎. lower normal (briefly, F.W.L. no.) if for 
every point d of D and every pair H, K of separated closed sets of E, there exist a ηℙ𝕕 W of d and a 
pair of separated open sets U, V of Ew

−  ∩ H, Ew
−  ∩ K in Ew

− . 

The 𝔽.𝕎.T.S. on D is amed 𝔽.𝕎. multi-normal (briefly, F.W.M. no.), if E is 𝔽.𝕎.U. no. and 
F.W.L. no. 

Proposition 3.1. Suppose that E be 𝔽. 𝕎. ℒ. U. ℂ𝕆.(resp., 𝔽. 𝕎. ℒ. L. ℂ𝕆. ) and 𝔽.𝕎.U. 
re. (resp. , 𝔽.𝕎.L. re. ) on D. Then for every point e of Ed, where in d ∈ D, and every open set V of e 
in E, there exists an open set U of e in EW

+ (resp. , EW
− ) such that the closure EW

+  ∩ Cl(U) (resp. , EW
−  

∩ Cl(U)) of U in EW
+ (resp. , EW

− ) is 𝔽. 𝕎. U. ℂ𝕆.(resp., 𝔽. 𝕎. L. ℂ𝕆. ) on W and contained in V. 

Proof. Let E be 𝔽. 𝕎. ℒ. U. ℂ𝕆.(resp., 𝔽. 𝕎. ℒ. L. ℂ𝕆. ) there exists a ηℙ𝕕 W* of d in D and an 
open set U* of e in EW∗ such that the closure EW∗

+  ∩ Cl(U∗) of U∗ in EW∗
+ (resp. , EW∗

−  
∩ Cl(U∗) of U∗ in EW∗

−  ) is 𝔽. 𝕎. U. ℂ𝕆.(resp., 𝔽. 𝕎. L. ℂ𝕆. ) on W*. Let E be 𝔽.𝕎.U. 
re. (resp. , 𝔽.𝕎.L. re. ) there exists a ηℙ𝕕 W ⊂ W∗ of d and an open set U of e in EW

+  (resp., EW
− ) such 

that the closure EW
+  ∩ Cl(U) of U in EW

+ (resp. , EW
−  ∩ Cl(U) of U in EW

− ) is contained in EW
+  ∩ 

U*∩V(resp., EW
−  ∩ U*∩V). Now EW

+  ∩ Cl(U∗) (resp. , EW
−  ∩ Cl(U∗) ) is 𝔽. 𝕎. U. ℂ𝕆.(resp., 

𝔽. 𝕎. L. ℂ𝕆. ) on W, since EW∗
+  ∩ Cl(U∗)(resp. , EW∗

−  ∩ Cl(U∗)) is 𝔽. 𝕎. U. ℂ𝕆.(resp., 
𝔽. 𝕎. L. ℂ𝕆. ) on W∗, and EW

+  ∩ Cl(U) (resp. , EW
−  ∩ Cl(U)) is closed in EW

+  ∩ Cl(U∗)(resp. , EW
−  

∩ Cl(U∗)). Hence EW
+  ∩ Cl(U) (resp. , EW

−  ∩ Cl(U)) is 𝔽. 𝕎. U. ℂ𝕆.(resp., 𝔽. 𝕎. L. ℂ𝕆. ) on W and 
contained in V. 

Corollary 3.1. Suppose that E be 𝔽. 𝕎. ℒ. M. ℂ𝕆. and 𝔽.𝕎.M. re. on D. Then for every point e of 
Ed, where in d ∈ D, and every open set V of e in E, there exists an open set U of e in EW such that 
the closure EW ∩ Cl(U) of U in EW is 𝔽. 𝕎. M. ℂ𝕆. on W and contained in V. 

Proposition 3.2. Let Ω : E → F be an open, U. continuous(resp., L. continuous), 𝔽. 𝕎. surjection, 
where in E and F are 𝔽. 𝕎. T. S. on D. If E is 𝔽. 𝕎. ℒ. U. ℂ𝕆.(resp., 𝔽. 𝕎. ℒ. L. ℂ𝕆. ) and 𝔽.𝕎.U. 
re. (resp. , 𝔽.𝕎.L. re. ) then, so is F. 

Proof. Let f be a point of Fd, where in d ∈ D, and let V be an open set of f in F. Pick any point e 
of Ω−1(f). Then Ω−1(V) is an open set of e in E. Let E be 𝔽. 𝕎. ℒ. U. ℂ𝕆.(resp., 𝔽. 𝕎. ℒ. L. ℂ𝕆. ) 
there exists a ηℙ𝕕 W of d in D and an open set U of e in EW such that the closure EW

+  ∩
Cl(U) (resp. , EW

−  ∩ Cl(U)) of U in EW is 𝔽. 𝕎. U. ℂ𝕆.(resp., 𝔽. 𝕎. L. ℂ𝕆. ) on W and contained in 
Ω−1(V). Then Ω(U) is an open set of f in FW, sine Ω is open, and closure 
FW

+ ∩ Cl(Ω(U)) of Ω(U) in FW
+ (resp. , FW

− ∩ Cl(Ω(U)) of Ω(U) in FW
− ) is 𝔽. 𝕎. U. ℂ𝕆.(resp., 

𝔽. 𝕎. L. ℂ𝕆. ) on W and contained in V. 

Corollary 3.2. Let Ω : E → F be an open, M. continuous, 𝔽. 𝕎. surjection, where in E and F are 
𝔽. 𝕎. T. S. on D. If E is 𝔽. 𝕎. ℒ. M. ℂ𝕆. and 𝔽.𝕎.M. re. then, so is F. 

Proposition 3.3. Suppose that E be 𝔽. 𝕎. ℒ. U. ℂ𝕆.(resp., 𝔽. 𝕎. ℒ. L. ℂ𝕆. ) and 𝔽.𝕎.U. 
re. (resp. , 𝔽.𝕎.L. re. ) on D. Let C be ℂ𝕆. subset of Ed, where in d ∈ D, and since V is an open set of 
C in E. Then there exists a ηℙ𝕕 W of d in D and an open set U of C in EW such that the closure 
EW

+  ∩ Cl(U) of U in EW
+ (resp. , EW

−  ∩ Cl(U) of U in EW
− ) is 𝔽. 𝕎. U. ℂ𝕆.(resp., 𝔽. 𝕎. L. ℂ𝕆. ) on W and 

contained in V. 
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Proof. Let E be 𝔽. 𝕎. ℒ. U. ℂ𝕆.(resp., 𝔽. 𝕎. ℒ. L. ℂ𝕆. ) there exists for every point e of C a ηℙ𝕕 We 
of d in D and an open set Ue of e in EWe such that the closure EWe

+  
∩ Cl(Ue) of Ue in EWe

+ (resp. , EWe
−  ∩ Cl(Ue) of Ue in EWe

−  ) is 𝔽. 𝕎. U. ℂ𝕆.(resp., 𝔽. 𝕎. L. ℂ𝕆. ) on We 
and contained in V. The family {Ue ; e ∈ C} constitutes a covering of the ℂ𝕆. C with open sets of E. 
Extract a finite sub covering indexed with e1, …,en say. Take W to be the intersection We1

 ∩ … ∩
 Wen

, and take U to be the restriction to EW of the union Ue1
 ∪ … ∪ Uen

. Then W is a ηℙ𝕕 of d in D 
and U is an open set of C in EW such that the closure EW

+  ∩ Cl(U) of U in EW
+ (resp. , EW

−  ∩
Cl(U) of U in EW

−  ) is 𝔽. 𝕎. U. ℂ𝕆.(resp., 𝔽. 𝕎. L. ℂ𝕆. ) on W Then W E be 𝔽.E𝕎.U. 
re. (resp. , 𝔽.𝕎.L. re. ) there exists and contained in V. 

Corollary 3.3. Suppose that E be 𝔽. 𝕎. ℒ. M. ℂ𝕆. and 𝔽.𝕎.M. re. on D. Let C be ℂ𝕆. subset of Ed, 
where in d ∈ D, and since V is an open set of C in E. Then there exists a ηℙ𝕕 W of d in D and an 
open set U of C in EW such that the closure EW

+  ∩ Cl(U) of U in EW
+ (resp. , EW

−  ∩ Cl(U) of U in 
EW

− ) is 𝔽. 𝕎. M. ℂ𝕆. on W and contained in V. 

Proposition 3.4. Let Ω : E → F be U. 𝓅. (resp. , L. 𝓅. ), 𝔽. 𝕎. surjection, where in E and F are 
𝔽. 𝕎. T. S. on D. If E is 𝔽. 𝕎. ℒ. U. ℂ𝕆.(resp., 𝔽. 𝕎. ℒ. L. ℂ𝕆. ) and 𝔽.𝕎.U. re. (resp. , 𝔽.𝕎.L. 
re. ) then, so is F. 

Proof. Let f ∈ Fd, where in d ∈ D, and let V be an open set of f in F. Then Ω+(V)(resp., Ω+(V))is 
an open set of Ω−1(f) in E. Let E be 𝔽. 𝕎. ℒ. U. ℂ𝕆.(resp., 𝔽. 𝕎. ℒ. L. ℂ𝕆. ). Since Ω−1(f) 
ℂ𝕆. , by Proposition (3.3) there exists a ηℙ𝕕 W of d in D and an open set U of Ω−1(f) in 
EW

+ (resp. , EW
− ) such that the closure EW

+  ∩ Cl(U) (resp. , EW
−  ∩ Cl(U)) of U in EW

+ (resp. , EW
− ) is 

𝔽. 𝕎. U. ℂ𝕆.(resp., 𝔽. 𝕎. L. ℂ𝕆. ) on W and contained in Ω+(V)(resp., Ω+(V)). Since Ω is closed there 
exists an open set U* of f in FW

+ (resp. , FW
− ) such that Ω+(U∗) ⊂ U(resp. , Ω−(U∗) ⊂ U). Then the 

closure FW
+ ∩ Cl(U∗) of U∗ in FW

+ (resp. , FW
− ∩ Cl(U∗) of U∗ in FW

− ) is 𝔽. 𝕎. U. ℂ𝕆.(resp., 𝔽. 𝕎. L. ℂ𝕆. ) 
is contained in Ω(EW

+  ∩ Cl(U))(resp., Ω(EW
−  ∩ Cl(U))) and so is 𝔽. 𝕎. U. ℂ𝕆.(resp., 𝔽. 𝕎. L. ℂ𝕆. ) on 

W. Since FW
+  ∩ Cl(U∗) (resp. , FW

−  ∩ Cl(U∗) ) is contained in V this shows that F is 
𝔽. 𝕎. ℒ. U. ℂ𝕆.(resp., 𝔽. 𝕎. ℒ. L. ℂ𝕆. ). 

Corollary 3.4. Let Ω : E → F be U. 𝓅. (resp. , L. 𝓅. ), 𝔽. 𝕎. surjection, where in E and F are 
𝔽. 𝕎. T. S. on D. If E is 𝔽. 𝕎. ℒ. M. ℂ𝕆. and 𝔽.𝕎.M. re. then, so is F. 

Proposition 3.5. Let Ω : E → F be U. continuous(resp., L. continuous) 𝔽. 𝕎. function, where in E is 
𝔽. 𝕎. U. ℂ𝕆.(resp., 𝔽. 𝕎. L. ℂ𝕆. ) space and F is 𝔽.𝕎.U. Hausd. (resp. , 𝔽.𝕎.L. Hausd. ) space on D. 
Then Ω is U. 𝓅. (resp. , L. 𝓅. ). 

Proof. Consider the figure shown below, where in r is the standard 𝔽. 𝕎. T. equivalence and G is 
the 𝔽. 𝕎. graph of Ω 

 

 

      

 

 

 

 

Now G closed embedding, with Proposition(2.10) in [8], let F be 𝔽.𝕎.U. Hausd. (resp. , 𝔽.𝕎.L. 
Hausd. ). Thus G is U. 𝓅. (resp. , L. 𝓅. ). Also X is U. 𝓅. (resp. , L. 𝓅. ) and so X × idF is 
U. 𝓅. (resp. , L. 𝓅. ). Hence (X × idF)θ G = r θ Ω is U. 𝓅. (resp. , L. 𝓅. ) and so Ω is 
U. 𝓅. (resp. , L. 𝓅. ), since r is a 𝔽.𝕎. T. equivalenc. 

Corollary 3.5. Let Ω : E → F be M. continuous 𝔽. 𝕎. function, where in E is 𝔽. 𝕎. M. ℂ𝕆. space 
and F is 𝔽.𝕎.M. Hausd. space on D. Then Ω is U. 𝓅. (resp. , L. 𝓅. ). 

E ×D F E 

𝐹 D ×D F 
𝑟 

Ω 

𝐺 

X × 𝑖𝑑𝐹 

Planned 3.1. 
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Corollary 3.6. Let Ω : E → F be M. continuous 𝔽.𝕎. injection, where in is 𝔽. 𝕎. M. ℂ𝕆. space and 
F is 𝔽.𝕎.M. Hausd. on D. Then Ω is closed embedding 

The corollary is often used in the case when Ω is surjective to show that Ω is a a 
𝔽.𝕎. T. equivalenc. 

Proposition 3.6. Let Ω : E → F be U. 𝓅. (resp. , L. 𝓅. ), 𝔽.𝕎. surjection where in E and F are 
𝔽.𝕎. T. S. on D. If E is 𝔽.𝕎.U. Hausd. (resp. , 𝔽.𝕎.L. Hausd. ) then so is F. 

Proof. Since Ω is U. 𝓅. (resp. , L. 𝓅. ) surjection so is Ω × Ω, in the following figure 

 

 

     

 

 

 

 

The diagonal ∆(E) closed, since E is 𝔽.𝕎.U. Hausd. (resp. , 𝔽.𝕎.L. Hausd. ), hence ((Ω 
×Ω)O∆)(E) = (∆OΩ)(E) is closed. But (∆OΩ)(E) = ∆(F), since Ω is surjective, and so F is 
𝔽. 𝕎. U. ℂ𝕆.(resp., 𝔽. 𝕎. L. ℂ𝕆. ), as asserted. 

Corollary 3.7. Let Ω : E → F be M. 𝓅. , 𝔽.𝕎. surjection where in E and F are 𝔽.𝕎. T. S. on D. If E is 
𝔽.𝕎.M. Hausd. then so is F. 

Proposition 3.7. Let E be 𝔽. 𝕎. U. ℂ𝕆.(resp., 𝔽. 𝕎. L. ℂ𝕆. ) and 𝔽.𝕎.U. Hausd. (resp. , 𝔽.𝕎.L. 
Hausd. ) space on D. Then E is 𝔽.𝕎.U. re. (resp. , 𝔽.𝕎.L. re. ). 

Proof. Let e ∈ Ed, where in d ∈ D, and let U be an open set of e in E. Since E is 𝔽.𝕎.U. 
Hausd. (resp. , 𝔽.𝕎.L. Hausd. ) there exists for each point e* ∈ Ed such that e* ∉ U an open set Ve∗  
of e and an open set V∗

e∗ of e* which do not intersect. Now the family of open sets V∗
e∗, for e* 

∈ (E − U)d
+(resp. , (E − U)d

−), forms a covering of (E − U)d
+(resp. , (E − U)d

−). Since E − U is closed 
in E and therefore 𝔽. 𝕎. U. ℂ𝕆.(resp., 𝔽. 𝕎. L. ℂ𝕆. ) there exists, by Proposition(2.2), a ηℙ𝕕 W of d in 
D such that EW

+ − (EW
+ ∩ U)(resp. , EW

− − (EW
− ∩ U)) is covered with a finite subfamily, indexed 

withe1
∗ , …,en

∗ , say. Now the intersection V = Ve1
∗  ∩ … ∩ Ven

∗ , is an open set of e which does not meet 
the open set V* = Ve1

∗ ∗ ∪ … ∪ Ven
∗ ∗

 of EW
+ − (EW

+ ∩ U)(resp. , EW
− − (EW

− ∩ U)). Therefore the closure 
EW

+  ∩ Cl(V) of EW
+ ∩ V in EW

+ (resp. , EW
−  ∩ Cl(V) of EW

− ∩ V in EW
−  ) is contained in U, as asserted. 

Corollary 3.8. Let E be 𝔽. 𝕎. M. ℂ𝕆. and 𝔽.𝕎.M. Hausd. space on D. Then E is 𝔽.𝕎.M. re.. 

 We extend this last result to. 

Proposition 3.8. Let E be 𝔽. 𝕎. ℒ. U. ℂ𝕆.(resp., 𝔽. 𝕎. ℒ. L. ℂ𝕆. ) and 𝔽.𝕎.U. Hausd. (resp. , 𝔽.𝕎.L. 
Hausd. ) space on D. Then E is 𝔽.𝕎.U. re. (resp. , 𝔽.𝕎.L. re. ). 

Proof. Let e ∈ Ed, where in d ∈ D, and let V be an open set of e in E. Since W is a ηℙ𝕕 W of d 
∈ D and let U be an open set of e ∈ EW such that the closure EW

+ ∩ Cl(U) of U in EW
+ (resp. , EW

−  
∩ Cl(U) of U in EW

− ) is 𝔽. 𝕎. U. ℂ𝕆.(resp., 𝔽. 𝕎. L. ℂ𝕆. ) on D. Then EW
+ ∩ Cl(U) (resp. , EW

−  ∩ Cl(U)) 
is 𝔽.𝕎.U. re. (resp. , 𝔽.𝕎.L. re. on W, by Proposition(3.7), since EW

+ ∩ Cl(U)(resp. , EW
− ∩ Cl(U)) is 

𝔽.𝕎.U. Hausd. (resp. , 𝔽.𝕎.L. Hausd. ) on W. So there exists a ηℙ𝕕 W* ⊂ W of d ∈ D and an open 
set U* of e ∈ EW∗ such that the closure EW∗

+ ∩ Cl(U∗) of U∗(resp. , EW∗
− ∩ Cl(U∗) of U∗) in 

EW∗  is contained in U ∩ V ⊂ V, as required. 

Corollary 3.9. Let E be 𝔽. 𝕎. ℒ. M. ℂ𝕆. and 𝔽.𝕎.M. Hausd. space on D. Then E is 𝔽.𝕎.M. re.. 

E ×D E E 

𝐹 F ×D F 
∆ 

Ω 

∆ 

Ω × Ω 

Planned 3.2. 
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Proposition 3.9. Let E be 𝔽.𝕎.U. re. (resp. , 𝔽.𝕎.L. re. ) space on D and let K be 
𝔽. 𝕎. U. ℂ𝕆.(resp., 𝔽. 𝕎. L. ℂ𝕆. ) subset of E. Let d be a point of D and let V be an open set of Kd in 
E. Then there exists a ηℙ𝕕 W of d in D and an open set U of KW in EW such that closure EW

+  
∩ Cl(U) of U in EW

+ (resp., EW
+  ∩ Cl(U) of U in EW

+ ) is contained in V. 
Proof. We may let Kd is non-empty since otherwise we can take U = EW

+ (resp. , EW
− ), where in W = 

D − X(E − V). Since V is an open set of each point e of Kd there exists, with 𝔽.𝕎.U. 
re. (resp. , 𝔽.𝕎.L. re. ), a ηℙ𝕕 W of d in D and an open set Ue ⊂ EWe

+ (resp. , EWe
− ) of e such that the 

closure EWe
+ ⋂ Cl(Ue) of Ue in EWe

+ (EWe
− ⋂ Cl(Ue) of Ue in EWe

− )is contained in V. The family of 
open sets { EWe

+  ∩ Ue(resp., EWe
−  ∩ Ue); e ∈ Kd} covers Kd and so there exists a ηℙ𝕕 W* of d and a 

finite subfamily indexed with e1, …,en say, which covers KW. Then the conditions are satisfied with  

 W = W*∩ We1
 ∩ … ∩  Wen

, U =  Ue1
 ∪ … ∪ Uen

. 

Corollary 3.10. Let E be 𝔽.𝕎.M. re. space on D and let K be 𝔽. 𝕎. M. ℂ𝕆. subset of E. Let d be a 
point of D and let V be an open set of Kd in E. Then there exists a ηℙ𝕕 W of d in D and an open set 
U of KW in EW such that closure EW ∩ Cl(U) of U in EW is contained in V. 

Corollary 3.11. Let E be . 𝕎. M. ℂ𝕆. and 𝔽.𝕎.M. re. on D. Then E is 𝔽.𝕎. M. no.. 

Proposition 3.10. Let E be 𝔽.𝕎.U. re. (resp. , 𝔽.𝕎.L. re. ) on D and let K be 𝔽. 𝕎. U. ℂ𝕆.(resp., 
𝔽. 𝕎. L. ℂ𝕆. ) subset of E. Let {Vi; i = 1, … , n} be a covering of Kd, where in d ∈ D with open sets 
of E. Then there exists a ηℙ𝕕 W of d and a covering {Ui; i = 1, … , n} of KW with open sets of 
EW

+ (resp. , EW
− ) such that the  closure EW

+ ∩ Cl(Ui) of Ui(resp. , EW
− ∩ Cl(Ui) of Ui) in EW

+ (resp. , EW
− ) 

is contained in Vi. 

Proof. Write V= V2 ∪ … ∪ Vn, so that E−V is closed in E. Hence K ∩ (E − V) is closed in K and 
so 𝔽. 𝕎. U. ℂ𝕆.(resp., 𝔽. 𝕎. L. ℂ𝕆. ). Applying the previous result to the open V1 of Kd ∩
(E − V)d

+(resp. , (E − V)d
−) we obtain a ηℙ𝕕 W of d and an open set U of KW ∩ (E − V) W such that 

EW
+ ∩ Cl(U)  ⊂ V1(resp. , EW

− ∩ Cl(U)  ⊂ V1). Now K ∩ V and K ∩ (E − V) cover K, hence V and U 
cover KW. Thus U = U1 is the first step in the shrinking process. We continue with repeating the 
argument for {U1, V2, …, Vn}, so as to shrink V2, and so on. Hence the result is obtained. 

Corollary 3.12. Let E be 𝔽.𝕎.M. re. on D and let K be 𝔽. 𝕎. M. ℂ𝕆. subset of E. Let {Vi; i =
1, … , n} be a covering of Kd, where in d ∈ D with open sets of E. Then there exists a ηℙ𝕕 W of d 
and a covering {Ui; i = 1, … , n} of KW with open sets of EW such that the closure EW

+ ∩
Cl(Ui) of Ui(resp. , EW

− ∩ Cl(Ui) of Ui) in EW is contained in Vi. 

Proposition 3.11. Let Ω : E → F be U. 𝓅. (resp. , L. 𝓅. ), U. open(resp. , L. open) 𝔽.𝕎. surjection, 
where in E and F are 𝔽.𝕎.T.S. on D. If E is 𝔽.𝕎.U. re. (resp. , 𝔽.𝕎.L. re. ) then so is F. 

Proof. Let E be 𝔽.𝕎.U. re. (resp. , 𝔽.𝕎.L. re. ). Let f be appoint of Fd, where in d ∈ D, and let V be 
an open set of f in F. Then Ω+(V)(resp., Ω−(V)) is an open set of the ℂ𝕆. Ω−1(f) in E. with 
Proposition(3.9), therefore, there exists a ηℙ𝕕 W of d in D and an open set U of Ω−1(f) in EW such 
that the cloure EW

+ ∩ Cl(U) of U(resp. , EW
− ∩ Cl(U) of U) in EW

+ (resp. , −) is contained in Ω+(V)(resp., 
Ω−(V)). 

Now since ΩW is closed there exists an open set V* of f in FW
+ (resp. , FW

− ) such that Ω+(V*) ⊂ 
U(resp., Ω−(V*) ⊂ U), and then the closure EW

+ ∩ Cl(V∗) of V∗(resp. , EW
− ∩ Cl(V∗) ofV∗) in 

EW
+ (resp. , EW

− ) is contained in V since, 

 Cl(V*) = Cl(Ω(Ω+(V*))(resp., Cl(Ω(Ω−(V*))) = Ω(ClΩ+(V*)) ⊂  Ω(Cl(U)) ⊂  Ω(Ω+(V))⊂ 
V(resp., Ω(ClΩ−(V*)) ⊂  Ω(Cl(U)) ⊂  Ω(Ω−(V))⊂ V). 

Thus, F is 𝔽.𝕎.U. re. (resp. , 𝔽.𝕎.L. re. ), as asserted. 

Corollary 3.13. Let Ω: E → F be U. 𝓅. (resp. , L. 𝓅. ), M. open 𝔽.𝕎. surjection, where in E and F are 
𝔽.𝕎.T.S. on D. If E is 𝔽.𝕎.M. re. then so is F. 
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