Fibrewise Multi-Compact and Locally Multi- Compact Spaces

Authors Names	ABSTRACT
 M.H. Jaber^a Y. Y. Yousif^b Publication data: 18 /12 /2023 Keywords: fibrewise multi-topological spaces, fibrewise multi-compact, fibrewise locally multi-compact spaces, fibrewise multi-compact(resp., locally multi-compac) space and some fibrewise multi-separation axioms 	The aim of the research is to apply fibrewise multi-emisssions of the paramount separation axioms of normally topology namely fibrewise multi-T0. spaces, fibrewise multi-T1 spaces, fibrewise multi-R0 spaces, fibrewise multi- Hausdorff spaces, fibrewise multi-functionally Hausdorff spaces, fibrewise multi-regular spaces, fibrewise multi-completely regular spaces, fibrewise multi-normal spaces and fibrewise multi-functionally normal spaces. Also we give many score regarding it.

1.Introduction

We beginning our work with the concept of category of Fibrewise (br*ie*fly, F.W.) sets on a known set, named the base set. If the base set is stated with D then F.W. set on D apply of a set E with a function X is X: $E \rightarrow D$, named the projection (briefly, project.). For every point d of D the fibre on d is the subset $E_d = X^{-1}(d)$ of E; fibres will be empty let we do not require X to be surjection, also for every subset D^* of D we regard $E_{D^*} = X^{-1}(D^*)$ as a F.W. set on D^* with the project. determined by X. A multi-function [2] Ω of a set E in to F is a correspondence such that $\Omega(e)$ is a nonempty subset of F for every $e \in E$. We will denote such a multi-function by $\Omega : E \rightarrow F$. For a multi-function Ω , the upper and lower inverse set of a set K of F, will be denoted by $\Omega^+(K)$ and $\Omega^-(K)$ respectively that is $\Omega^+(K) = \{e \in E : \Omega(e) \subseteq K\}$ and $\Omega^-(K) = \{e \in E : \Omega(e) \cap V \neq \emptyset\}$.

Definition 1.1. [8] Suppose that E and F are $\mathbb{F}.\mathbb{W}$. sets on D, with project. $X_E: E \to D$ and $Y_F: F \to D$, respectively, a function $\Omega: E \to F$ is named to be $\mathbb{F}.\mathbb{W}$. if $Y_FO\Omega = X_E$, that is to say if $\Omega(X_d) \subset Fd$ for every point d of D.

It should be noted that a F.W. function $\Omega: E \to F$ on D determines, by restriction, F.W. function ΩD^* : $ED^* \to FD^*$ on D^* for every D^* of D.

Let {Er} be an indexed family of F.W. sets on D the F.W. product $\prod_D E_r$ is stated, as a F.W. set on D, and comes included with the family of F.W. projection $\pi_r \colon \prod_D E_r \to E_r$. Specifically, the F.W. product is stated as the subset of the normally product $\prod E_r$ where in the fibres are the products of the relevant fibers of the strain E_r . The F.W. product is recognized with the following Cartesian property: for every F.W. set E on D the F.W. functions $\Omega \colon E \to \prod_r E_r$ correspond exactly to the families of F.W. functions { Ω_r }, with $\Omega_r = \pi_r \circ \Omega \colon E \to Er$. For example if Er = E for every index r the diagonal $\Delta \colon E \to \prod_D E_r$, specifically the F.W. coproduct synchronize, as a set, with the normally coproduct (saparated union), the fibres being the coproducts of the relevant fipers of the summands E_r . The F.W. functions $\varphi \colon \coprod_D E_r \to E$ correspond exactly to the families of F.W. functions $\varphi \colon \coprod_D E_r \to e$ corresponde to the families of F.W. functions $\nabla \in e^r \to \prod_D E_r$ is stated so that $\pi_r \circ \Delta = i dE$ for every r. If {Er} is as before, the F.W. coproduct $\coprod_D E_r$ is with stated, as F.W. set on D, and comes included with the family of F.W. insertions $\sigma \colon E_r \to \coprod_D E_r$, specifically the F.W. coproduct synchronize, as a set, with the normally coproduct (saparated union), the fibres being the coproducts of the relevant fipers of the summands E_r . The F.W. functions $\varphi \colon \bigsqcup_D E_r \to E$ correspond exactly to the families of F.W. functions $\{\varphi_r\}$, where in $\varphi_r = \varphi \circ \sigma_r \colon E_r \to E$. For example, if $E_r = E$ for every index r the codiagonal $\nabla \colon \bigsqcup_D E \to E$ is stated so that, $\nabla \circ_r = i dE$ for every r. The notation $E \times_D F$ is used for the F.W. product in the case of the family {E, F}, of two F.W. sets and similarity for finite

^a University of Baghdad, College of Education for Pure Sciences - Ibn Al-Haitham, Department of Mathematics, Iraq, E-Mail: maged.hameed1203a@ihcoedu.uobaghdad.edu.iq

^b University of Baghdad, College of Education for Pure Sciences - Ibn Al-Haitham, Department of Mathematics, Iraq, E-Mail: yousif.y.y@ihcoedu.uobaghdad.edu.iq

families generally. As well as, we builte on some of the result in [1,6,7-18]. For other concepts or informataon that are undefined here we follow nearly I.M.James [8], R.Engelking [7] and N. Bourbaki [6].

Recall that [8] Let D be topological space, the $\mathbb{F}.\mathbb{W}$. topology space (briefly, $\mathbb{F}.\mathbb{W}.T.S.$) on a $\mathbb{F}.\mathbb{W}$. set E on D, mean any topology on E for that the project. X is continuous. **Remark** 1.1. [8]

- (a) The smaller topology is the topology trace with X, where in the open sets of E are exactly the pre image of the open sets of D, this is named the F.W. indiscrete topology.
- (b) The F.W.T.S. on D is stated to be a F.W. set on D with a F.W.T.S.

We regard the topology product $D \times T$, for any topological space T, as a F.W.T.S. on D using the category of first projection. The equivalences in the category of F.W.T.S. are named F.W.T. equivalences. If E is F.W.T. equivalent to $D \times T$, for some topological space T, we say that E is trivial, as a F.W.T.S. on D. In F.W.T. the form neighborhood (briefly, $\eta \mathbb{P}d$) is used in exactly in the same sense as it is in normally topology, but the forms F.W. basic may ned some illustration, so let E be F.W.T.S. on D, if e is a point of Ed where in $d \in D$, appear a family N(e) of $\eta \mathbb{P}d$ of e in E as F.W. basic if as every $\eta \mathbb{P}d$ H of e we have $\mathbb{E}w \cap K \subset H$, for some element K of N(e) and $\eta \mathbb{P}d$ W of d in D. As exampe, in the case of the topological product $D \times T$, where in T is a topological spaces, the family of Cartesian products $D \times N(t)$, where in N(t) runs through the $\eta \mathbb{P}d$ s of t, is F.W. basic for (d, t).

Definition 1.2. [8] The F.W. functions Ω : $E \rightarrow F$; E and F are \mathbb{F} . \mathbb{W} . spaces on D is named:

- (a) continuous (briefly, cont.) if every $e \in Ed$; $d \in D$, the $\Omega^{-1}(e)$ is open set of e.
- (b) open if for every $e \in E_d$, $d \in D$, the direct image of every open set of e is an open set of $\Omega(e)$.

Definition 1.3. [8] The $\mathbb{F}.\mathbb{W}.T.S. \in \mathbb{D}$ on D is named $\mathbb{F}.\mathbb{W}$. closed (resp., open) if the project. X is closed (resp., open) functions.

Definition 1.4. [5] Let Ω : $E \to F$ be a multi-function. Then Ω is upper cont. (briefly, U. cont.) iff $\Omega^+(K)$ open in E for all V open in F. That is, $\Omega^+(K) = \{x \in E : \Omega(x) \subseteq K\}$. $K \subseteq F$.

Definition 1.5. [5] Let Ω : $E \to F$ be a multi-function. Then Ω is lower cont. (briefly, L. cont.) iff $\Omega^{-}(K)$ open in E for all K open in F. That is, $\Omega^{-}(K) = \{e \in E : \Omega(e) \cap K \neq \emptyset\}$. $K \subseteq F$

Let Ω : $E \to F$ be a multi-function. Then Ω is multi cont. (briefly, M. cont.) iff it is U. cont. and L. cont.

2. Fibrewise Multi-Compact and Locally Multi-Compact Spaces

In this segment we study $\mathbb{F}.\mathbb{W}$. multi-compact and $\mathbb{F}.\mathbb{W}$. locally multi-compact spaces as a generalizations of well-known ideas multi-compact and locally multi-compact topological spaces.

Definition 2.1. The function $\Omega : E \to F$ is named upper proper (briefly, U. p.). If it is upper continuous, closed and $\forall f \in F, \Omega^{-1}(f)$ is compact set.

Definition 2.2. The function $\Omega : E \to F$ is named lower proper (briefly, L. p.). If it is lower continuous, closed and $\forall f \in F, \Omega^{-1}(f)$ is compact set.

The function $\Omega : E \to F$ is named multi-proper (briefly, M. p.). If it is U. p and L. p..

For example, Assume that (\mathbb{R}, τ) where in τ is the topology with basic whose members are of the form (a, b) and (a, b) $-\mathbb{N}, \mathbb{N} = \{1 \setminus n; n \in \mathbb{Z}^+\}$ and $E = \mathbb{N}$. Define $\Omega : (\mathbb{R}, \tau) \to (\mathbb{R}, \tau)$ by Ω (e) = e, so Ω is M. p. function.

A function $\Omega : E \to Y$ is a F.W. and M. p. function, so Ω is named F.W. M. p. function.

Definition 2.3. The $\mathbb{F}.\mathbb{W}$. T. S. E on D is named a $\mathbb{F}.\mathbb{W}$. U. \mathbb{CO} ., when the projection function X is U. p..

Definition 2.4. The $\mathbb{F}.\mathbb{W}$. T. S. E on D is named a $\mathbb{F}.\mathbb{W}$. L. \mathbb{CO} ., when the projection function X is L. p..

The F.W. T. S. E on D is named a F.W. M. CO. if it is F.W. U. CO. and F.W. L. CO..

Remark 2.1.

- (a) Every F.W. M. CO. space is F.W. U. CO. space, but the convers is not true.
- (b) Every $\mathbb{F}.\mathbb{W}.\mathbb{M}.\mathbb{CO}$. space is $\mathbb{F}.\mathbb{W}.\mathbb{L}.\mathbb{CO}$. space, but the convers is not true.
- (c) The $\mathbb{F}.\mathbb{W}.\mathbb{U}.\mathbb{CO}$. space and $\mathbb{F}.\mathbb{W}.\mathbb{L}.\mathbb{CO}$. space are independence.

Example 2.1.

(a) Let $E = \{a, b, c\}, \tau_{(E)} = \text{discrete topology. } D = \{1, 2\}, \rho = \{\emptyset, D, \{1\}\}.$ Define the project. $X: (E, \tau_{(E)}) \rightarrow (D, \rho)$ by $X(a) = X(b) = X(c) = \{1\}$ 1. E is F.W.U.CO.S., F.W.L.CO., and F.W.M.CO.S. 2.

(b) Let E = N, with the cofinite topology τ_{cof} and let $D = \{a, b, c\}$ with the topology $\rho = \{\emptyset, D, \{a\}, \{a, b\}\}$. Define multi-function

3. X : (
$$\mathbb{R}, \tau$$
) \rightarrow (D, ρ) by X(e) =
 $\begin{cases} \{a\}; e \leq 0 \\ \{a, c\}; e > 0 \end{cases}$

4. E is $\mathbb{F}.\mathbb{W}.$ L. CO.S., but not $\mathbb{F}.\mathbb{W}.$ U. CO.S. and not $\mathbb{F}.\mathbb{W}.$ M. CO.S.

5.

(c) Let $E = \{a, b, c\}$, $\tau_{(E)}$ = discrete topology and $D = \{a, b\}$ with the topology $\rho = \{\emptyset, D, \{a\}\}$. Define multi-function

6. X : (\mathbb{R}, τ) \rightarrow (D, ρ) by X(e) = $\begin{cases} \{a\}; e \leq 0 \\ \emptyset; e > 0 \end{cases}$

- 7. E is $\mathbb{F}.\mathbb{W}.U.\mathbb{CO}.S.$, but not $\mathbb{F}.\mathbb{W}.L.\mathbb{CO}.S.$ and not $\mathbb{F}.\mathbb{W}.M.\mathbb{CO}.S.$ 8.
- (d) Let $E = \mathbb{R}$ with the usual topology τ and $D = \{a, b, c\}$ with the topology $\rho = \{\emptyset, D, \{a\}\}$. Define multi-function

9. X : (
$$\mathbb{R}, \tau$$
) \rightarrow (D, ρ) by X(e) =

$$\begin{cases}
\{a\}; e < 0 \\
\{a, b\}; e = 0 \\
\{c\}; e > 0
\end{cases}$$

10. E is not $\mathbb{F}.\mathbb{W}.\mathbb{U}.\mathbb{CO}.S.$, not $\mathbb{F}.\mathbb{W}.\mathbb{L}.\mathbb{CO}.S.$ and not $\mathbb{F}.\mathbb{W}.\mathbb{M}.\mathbb{CO}.S.$

Proposition 2.1. The $\mathbb{F}.\mathbb{W}.$ T. S. E on D is $\mathbb{F}.\mathbb{W}.$ U. $\mathbb{CO}.$ (resp., $\mathbb{F}.\mathbb{W}.$ L. $\mathbb{CO}.$) iff E is a $\mathbb{F}.\mathbb{W}.$ closed and every fibre of E is $\mathbb{CO}.$

Proof. (\Rightarrow) Let E be a F.W. U. CO. (resp., F.W. L. CO.) space, so the projection function X: $E \rightarrow D$ is U. p. (resp., L. p.) function(i.e., X is a closed and for every $d \in D$, E_d is CO.., So E is an F.W. closed and all fibre of E is CO..

(⇐) Let E be F.W. closed and all fibre d of D, Ed is CO., therefore the projection function $X : E \to D$ is a closed and X is U. continuous (resp., L. continuous), and for every $d \in D$, E_d is CO.. So E is F.W. U. CO. (resp., F. W. L. CO.).

Corollary 2.1. The F.W. T. S. E on D is F.W. M. \mathbb{CO} . iff E is a F.W. closed and every fibre of E is \mathbb{CO} .

Proposition 2.2. Let E be a F.W. T. S. on D. Then E is F.W. U. CO. (resp., F.W. L. CO.) iff for every fibre E_d of E and every covering Γ of E_d by open sets of E there exists a $\eta \mathbb{P}d$ W of d such that, a finite subfamily of Γ covers E_W .

Proof. (\Rightarrow) Let E be a F.W. U. CO. (respF.W. L. CO.) space, thus the projection function X: E \rightarrow D is U. p. (resp., L. p.) function, so that E_d is F.W. CO.) for every $d \in D$. Assume that Γ is a covering of E_d in open sets of E for every $d \in D$ and let $E_W = \bigcup E_d$ for all $d \in W$. Since E_d is F.W. CO. for every $d \in W \in D$ and the union of F.W. CO. sets is a F.W. CO., but E_W is a F.W. CO.. So, there exists a $\eta \mathbb{P}d$ W of d such that a finite subfamily of Γ covers E_W .

(⇐) Let E be F.W.T.S. on D, thus the projection function $X: E \to D$ exist. T.P. X is U. p. (resp., L. p.). So X is U. continuous (resp., L. continuous) and for all $d \in D$, E_d is $\mathcal{F}. \mathcal{W}. \mathbb{CO}$.) by taking $E_d = E_W$. By Proposition (2.1), therefore X is closed. So, X is U. p. (resp., L. p.) and E is F.W.U.CO. (resp., F.W. L. CO.).

Corollary 2.2. Let E be a F.W. T.S. on D. Then E is F.W. M. CO. iff for every fibre E_d of E and every covering Γ of E_d by open sets of E there exists a $\eta \mathbb{P}d$ W of d such that, a finite subfamily of Γ covers E_W .

Proposition 2.3. Let $\Omega : E \to F$ be U. p. (resp., L. p.), closed F.W. function, where in E and F are F.W. T. S. on D. If F is F.W. U. CO. (resp., F.W. L. CO.) then, so is E.

Proof. Assume that $\Omega : E \to F$ is U. p. (resp., L. p.), closed F.W. function and F is F is F.W. U. \mathbb{CO} . (resp., F.W. L. \mathbb{CO} .) space i.e., the projection function $X_F: F \to D$ is a U. p. (resp., L. p.). T.P. E is $\mathcal{F} \cdot \mathcal{W} \cdot U$. \mathbb{CO} . (resp., $\mathcal{F} \cdot \mathcal{W} \cdot L$. \mathbb{CO} .) space i.e., the projection function $X_E: E \to D$ is U. p. (resp., L. p.). So, it is obvious that X_E is U. continuous (resp., L. continuous), let H be a closed. subset of $X_{\widetilde{d}}$, where $d \in D$. However, Ω is a closed, so Ω (H) is a closed subset of F_d . By X_E is a closed, so $X_E(\Omega$ (H)) is a closed in D. However $E(\Omega$ (H)) = ($X_E \circ \Omega$)(H) = $X_E(H)$ is closed in D, so X_E is a closed. Let $d \in D$, since X_E is U. p. (resp., L. p.), so F_d is \mathbb{CO} . Now let $\{U_i: i \in \Lambda\}$ be a family of open sets of E such that, $F_d \subset U_{i\in\Lambda}U_i$. If $f \in F_d$, subsistent a finite subset M(f) of Λ such that $\Omega^{-1}(f) \subset \bigcup_{i\in\mathcal{M}(d)} U_i$. Because Ω is closed function, so by Proposition (2.2) subsistent a open set (\mathcal{V})_f of F such that $f \in (\mathcal{V})_f$ and $\Omega^{-1}((\mathcal{V})_f) \subset \bigcup_{i\in\mathcal{M}(f)} \Omega^{-1}(\mathcal{V})_i \in \mathcal{M}_{i\in\mathcal{M}(f)}$. Thus if $\mathcal{M} = \bigcup_{f \in K} \mathcal{M}(f)$, then \mathcal{M} is a finite subset of Λ and $\Omega^{-1}(F_d) \subset \bigcup_{i\in\mathcal{M}} U_i$. Then $\Omega^{-1}(F_d) = \Omega^{-1}(X_F^{-1}(d)) = (X_F \circ \Omega)^{-1}(d) = X_E^{-1}(d) = E_d$ and $E_d \subset \bigcup_{i\in\mathcal{M}} U_i$, then E_d is a \mathbb{CO} . Therefore, X_E is $U \in \mathcal{P}$. (resp., L. \mathcal{P}) and E is a F.W. U. \mathbb{CO} . (resp., F.W. L. \mathbb{CO} .).

Corollary 2.3. Let $\Omega : E \to F$ be M. p., closed F.W. function, where in E and F are F.W. T. S. on D. If F is F.W. M. CO.then, so is E.

The category of $\mathbb{F}.\mathbb{W}.U.\mathbb{CO}.$ (resp., $\mathbb{F}.\mathbb{W}.L.\mathbb{CO}.$ and $\mathbb{F}.\mathbb{W}.M.\mathbb{CO}.$) spaces is finitely multiplicative as mentioned in:

Proposition 2.4. Suppose that $\{E_r\}$ be a family of $\mathbb{F}.\mathbb{W}.U.\mathbb{CO}.$ (resp., $\mathbb{F}.\mathbb{W}.L.\mathbb{CO}.$) spaces on D. Therefore after the $\mathbb{F}.\mathbb{W}.T.$ product $E = \prod_D E_r$, is $\mathbb{F}.\mathbb{W}.U.\mathbb{CO}.$ (resp., $\mathbb{F}.\mathbb{W}.L.\mathbb{CO}.$).

Proof. Let $\{E_r\}$ and F are F.W. T. S. on D. When E is F.W. U. \mathbb{CO} . (resp., F.W. L. \mathbb{CO} .), so the projection function $X \times id_F : E \times_D F \equiv F$ is U. p. (resp., L. p.). When F is also F.W. U. \mathbb{CO} . (resp., F.W. L. \mathbb{CO} .), therefore is $E \times_{\mathfrak{N}} F$ by Proposition (2.3).

F.W. U. CO. (resp., F.W. L. CO.), therefore is $E \times_{\mathfrak{V}} F$ by Proposition (2.3). **Corollary 2.4.** Suppose that $\{E_r\}$ be a family of F.W. M. CO. spaces on D. Therefore after the F.W. T. product $E = \prod_D E_r$, is F.W. M. CO. .

Proposition 2.5. Let E is $\mathbb{F}.\mathbb{W}$. T. S. on D. Suppose that E_i is $\mathbb{F}.\mathbb{W}$. U. \mathbb{CO} . (resp., $\mathbb{F}.\mathbb{W}$. L. \mathbb{CO} .) for every member E_i of a finite covering of E. Then E is $\mathbb{F}.\mathbb{W}$. U. \mathbb{CO} . (resp., $\mathbb{F}.\mathbb{W}$. L. \mathbb{CO} .)

Proof. Let E be a F.W. T. S. on D. Currently, the projection function $X : E \to D$ subsistent. T.P. X is U. \mathcal{P} . (resp., L. \mathcal{P} .). Currently, it is obvious that X is U. continuous (resp., L. continuous). Since E_i is $\mathcal{F}.W.U.\mathbb{CO}$. (resp., $\mathcal{F}.W.L.\mathbb{CO}$.), then the projection function $X_i: E_i \to D$ is a closed. and for all $d \in D$, $(E_i)_d$ is \mathbb{CO} . for every member E_i of a finite covering of E Assume that H is a closed. subset of E, then $X(H) = \bigcup X_i(E_i \cap H)$ which is a finite union of closed sets and so X is a closed. Assume that $d \in D$, then $E_d = \bigcup (E_i)_d$ which is a finite union of \mathbb{CO} . sets and so E_d is a \mathbb{CO} . Thus, X is U. \mathcal{P} . (resp., L. \mathcal{P} .) and E is F.W. U. \mathbb{CO} . (resp., F.W. L. \mathbb{CO} .).

Corollary 2.5. Let E is $\mathbb{F}.\mathbb{W}$. T. S. on D. Suppose that E_i is $\mathbb{F}.\mathbb{W}$. M. \mathbb{CO} . for every member Ei of a finite covering of E. Then E is $\mathbb{F}.\mathbb{W}$. M. \mathbb{CO} .

Proposition 2.6. Let E be $\mathbb{F}.\mathbb{W}.\mathbb{U}.\mathbb{CO}.$ (resp., $\mathbb{F}.\mathbb{W}.\mathbb{L}.\mathbb{CO}.$) space on D. So E_{D^*} is $\mathbb{F}.\mathbb{W}.\mathbb{U}.\mathbb{CO}.$ (resp., $\mathbb{F}.\mathbb{W}.\mathbb{L}.\mathbb{CO}.$) space on D^* for every subspace D^* of D.

Proof. Suppose that E is F.W. U. CO. (resp., F.W. L. CO.) i.e., the projection function $X_E : E \to D$ is U. p. (resp., L. p.) To show that E_{D^*} is F.W. U. CO. (resp., F.W. L. CO.) space over D^* i.e., the projection function $X_{D^*} : E_{D^*} \to D^*$ is U. p. (resp., L. p.) Currently, it is obvious that X_{D^*} is U. continuous(resp., L. continuous). Assume that H is a closed subset of E, then $H \cap E_{D^*}$ is a closed in a subspace E_{D^*} and $X_{D^*}(H \cap E_{D^*}) = X(H \cap D^*)$ which is closed set in D^* , so X is a closed. Let $d \in D$, therefore $(E_{D^*})_d = E_d \cap E_{D^*}$ which is a CO. set in E_{D^*} . So, X_{D^*} is U. p. (resp., L. p.) and E_{D^*} is F.W. U. CO. (resp., F.W. L. CO.) over D^* .

Corollary 2.6. Let E be $\mathbb{F}.\mathbb{W}.\mathbb{M}.\mathbb{CO}$. space on D. So \mathbb{E}_{D^*} is $\mathbb{F}.\mathbb{W}.\mathbb{M}.\mathbb{CO}$. space on D^{*} for every subspace D^{*} of D.

Proposition 2.7. Let E be a F.W. T. S on D Suppose that (E_{D_i}) is F.W. U. CO. (resp., F.W. L. CO.) on (D_i) for every member (D_i) of an open covering of D. Then E is F.W. U. CO. (resp., F.W. L. CO.) on D.

Proof. Suppose that E is F.W. T. S. on D, then the projection function $X_E : E \to D$ subsistent. T.P. X_E is U. p. (resp., L. p.). Currently, it is obvious that X_E is U. continuous (resp., L. continuous). Since E_{D_i} is F.W. U. \mathbb{CO} . (resp., F.W. L. \mathbb{CO} .) on D_i , therefore the projection function $X_{D_i} : E_{D_i} \to D_i$ is U. p. (resp., L. p.) for all member D_i of an open covering of D Assume that H is a closed subset of E, then we have $X_E(H) = \bigcup X_{D_i(E)}(E_{D_i} \cap H)$ which is a union of closed sets and so X_E is a closed Suppose that $d \in D$ then $E_d = \bigcup (E_{D_i})_d$ for every $d = \{d_i\} \in D_i$. Since E_{D_i} is \mathbb{CO} . in E_{D_i} and the union of \mathbb{CO} . sets is \mathbb{CO} ., we have E_d is a \mathbb{CO} .. So, X_E is a U. p. (resp., L. p.) and E is a F.W. U. \mathbb{CO} . (resp., F.W. L. \mathbb{CO} .).

Corollary 2.7. Let E be a F.W. T. S on D Suppose that (E_{D_i}) is F.W. M. \mathbb{CO} . on (D_i) for every member (D_i) of an open covering of D. Then E is F.W. M. \mathbb{CO} . on D.

Actually, the final result is also holds for locally finite closed coverings, instead of open coverings.

Proposition 2.8. A function $\Omega : E \to F$ is a F.W. function, where E and F are F.W. T. S. on D. If E is F.W. U. \mathbb{CO} . (resp., F.W. L. \mathbb{CO} .) and $id_E \times \Omega : E \times_D E \to E \times_D F$ is U. p. (resp., L. p.) and closed, then Ω is U. p. (resp., L. p.).

Proof. Regard the commutative figure shown below

If E is $\mathbb{F}.\mathbb{W}.U.\mathbb{CO}.(\text{resp.},\mathbb{F}.\mathbb{W}.L.\mathbb{CO}.)$, so π_2 is U.p.(resp.,L.p.). Condition $\mathrm{id}_E \times \Omega$ is additionally U.p.(resp.,L.p.) and closed then $\pi_2 \circ (\mathrm{id}_E \times \Omega) = \Omega \circ \pi_2$ is U.p.(resp.,L.p.), and so Ω itself is U.p.(resp.,L.p.).

Corollary 2.8. A function $\Omega : E \to F$ is a F.W. function, where E and F are F.W. T. S. on D. If E is F.W. M. \mathbb{CO} . and $id_E \times \Omega : E \times_D E \to E \times_D F$ is M. p. and closed, then Ω is M. p.

The next new concept in this segment is given by the following:

Definition 2.5. A F.W. T. S. E on D is named F.W.locally upper compact (briefly, F.W. \mathcal{L} . U. \mathbb{CO} .) if for every point e of E_d , where in $d \in D$, subsistent a $\eta \mathbb{P}d \mathcal{W}$ of d and an open set $U \subset E_{\mathcal{W}}$ of e such that, the closure of U in $E_{\mathcal{W}}$ (i.e., $E_{\mathcal{W}} \cap Cl(U)$) is F.W. U. \mathbb{CO} . on \mathcal{W} .

Definition 2.6. A F.W. T. S. E on D is named F.W.locally lower compact (briefly, F.W. \mathcal{L} . L. \mathbb{CO} .) if for every point e of E_d , where in $d \in D$, subsistent a $\eta \mathbb{P} d \mathcal{W}$ of d and an open set $U \subset E_{\mathcal{W}}$ of e such that, the closure of U in $E_{\mathcal{W}}$ (i.e., $E_{\mathcal{W}} \cap Cl(U)$) is F.W. L. \mathbb{CO} . on \mathcal{W} .

The F.W.T.S. E on D is named F.W. locally multi-compact (briefly, F.W. \mathcal{L} . M. \mathbb{CO} .) if it is F.W. \mathcal{L} . U. \mathbb{CO} . and F.W. \mathcal{L} . L. \mathbb{CO} .

Remark 2.2.

- (a) Every F.W. L. M. CO. space is F.W. L. U. CO. space, but the convers is not true.
- (b) Every F.W. L. M. CO. space is F.W. L. L. CO. space, but the convers is not true.
- (c) The F.W. L. U. CO. space and F.W. L. L. CO. space are independence.

Planned 2.3.

Example 2.2.

(a) Let $E = \{a, b, c\}, \tau_{(E)} = \text{discrete topology. } D = \{1, 2\}, \rho = \{\emptyset, D, \{1\}\}$. Define the project. $X: (E, \tau_{(E)}) \rightarrow (D, \rho)$ by $X(a) = X(b) = X(c) = \{1\}$ $E \text{ is } \mathbb{F}.\mathbb{W}.\mathcal{L}. U. \mathbb{CO}.S., \mathbb{F}.\mathbb{W}.\mathcal{L}. L. \mathbb{CO}., \text{ and } \mathbb{F}.\mathbb{W}.\mathcal{L}. M. \mathbb{CO}.S.$

(b) Let $E = \mathbb{R}$, with the usual topology τ and let $D = \{a, b, c\}$ with the opology

 $\rho = \{\emptyset, D, \{a\}, \{a, b\}\}$. Define multi-function

$$X: (\mathbb{R}, \tau) \to (D, \rho) \text{ by } X(e) = \begin{cases} \{a\}; e \leq 0\\ \{a, c\}; e > 0 \end{cases}$$

E is $\mathbb{F}.\mathbb{W}.\mathcal{L}.\mathbb{L}.\mathbb{CO}.S.$, but not $\mathbb{F}.\mathbb{W}.\mathcal{L}.\mathbb{U}.\mathbb{CO}.S.$ and not $\mathbb{F}.\mathbb{W}.\mathcal{L}.\mathbb{M}.\mathbb{CO}.S.$

(c) Let E is infinite set with $\tau_{(E)}^{}=$ discrete topology and D = {a, b} with the topology $\rho = \{\emptyset, D, \{a\}\}$. Define multi-function

$$X: (\mathbb{R}, \tau) \to (D, \rho) \text{ by } X(e) = \begin{cases} \{a\}; e \leq 0 \\ \emptyset; e > 0 \end{cases}$$

E is $\mathbb{F}.\mathbb{W}.\mathcal{L}.\mathbb{U}.\mathbb{CO}.S.$, but not $\mathbb{F}.\mathbb{W}.\mathcal{L}.\mathbb{L}.\mathbb{CO}.S.$ and not $\mathbb{F}.\mathbb{W}.\mathcal{L}.\mathbb{M}.\mathbb{CO}.S.$

(d) Let $E = \mathbb{R}$ with the usual topology τ and $D = \{a, b, c\}$ with the opology $\rho = \{\emptyset, D, \{a\}\}$. Define multi-function

X : (ℝ, τ) → (D, ρ) by X(e) =

$$\begin{cases}
\{a\}; e < 0 \\
\{a, b\}; e = 0 \\
\{c\}; e > 0
\end{cases}$$

E is not $\mathbb{F}.\mathbb{W}.\mathcal{L}.\mathbb{U}.\mathbb{CO}.S.$, not $\mathbb{F}.\mathbb{W}.\mathcal{L}.\mathbb{L}.\mathbb{CO}.S.$ and not $\mathbb{F}.\mathbb{W}.\mathcal{L}.\mathbb{M}.\mathbb{CO}.S.$

Remark 2.3. F.W. U. CO. (resp., F.W. L. CO. and F.W. M. CO.) spaces are necessarily F.W. \mathcal{L} . U. CO.(resp., F.W. \mathcal{L} . L. CO. and F.W. \mathcal{L} . M. CO.) by taking $\mathcal{W} = D$ and $E_{\mathcal{W}} = E$., however the reverse does not need to be correct, as the following example.

Example2.3. Assume that (E, τ_{dis}) where E is infinite set and τ is discrete topology, thus $(E, \sigma \tau_{dis}) \mathbb{F}.\mathbb{W}.\mathcal{L}.\mathbb{M}.\mathbb{C}\mathbb{O}.$ on \mathbb{R} , since for all e of E_d , where $d \in D$, subsistent a $\eta \mathbb{P}d \mathcal{W}$ of d and an open set $U \subset E_{\mathcal{W}}$ of e such that, the closure of U in $E_{\mathcal{W}}$ (i.e., $E_{\mathcal{W}} \cap Cl(U)$) is $\mathcal{F}.\mathcal{W}.\mathcal{L}.\mathbb{M}.\mathbb{C}\mathbb{O}.$ on \mathbb{R} . Also the product space $D \times T$ is $\mathbb{F}.\mathbb{W}.\mathcal{L}.\mathbb{U}.\mathbb{C}\mathbb{O}.$ (resp., $\mathbb{F}.\mathbb{W}.\mathcal{L}.\mathbb{L}.\mathbb{C}\mathbb{O}.$ and $\mathbb{F}.\mathbb{W}.\mathcal{L}.\mathbb{M}.\mathbb{C}\mathbb{O}.$) on D,for all $\mathcal{L}.\mathbb{U}.\mathbb{C}\mathbb{O}.$ (resp., $\mathcal{L}.\mathbb{L}.\mathbb{C}\mathbb{O}.$ and $\mathcal{L}.\mathbb{M}.\mathbb{C}\mathbb{O}.$) space T.

Closed subspaces of F.W. L. U. (resp., F.W. L. L.) spaces are F.W. L. U. (resp., F.W. L. L.) spaces,. Actually we have.

Proposition 2.9. A function $\Omega : E \to E^*$ is a closed F.W.embedding, where E and E* are F.W.T.S. on D. E is F.W. \mathcal{L} . U. \mathbb{CO} .(resp., F.W. \mathcal{L} . L. \mathbb{CO} .) when E* is F.W. \mathcal{L} . U. \mathbb{CO} .(resp., F.W. \mathcal{L} . L. \mathbb{CO} .).

Proof. Let e of E_d , where $d \in D$, subsistent a $\eta \mathbb{P}d \mathcal{W}$ of d and an open set $U \subset E_{\mathcal{W}}$ of e such that, the closure of U in $E_{\mathcal{W}}$ (i.e., $E_{\mathcal{W}} \cap Cl(U)$) is $\mathbb{F}.\mathbb{W}.\mathcal{L}.U.\mathbb{C}O.(\text{resp.}, \mathbb{F}.\mathbb{W}.\mathcal{L}.L.)$ on \mathcal{W} . Then $\Omega^{-1}(U) \subset E_{\mathcal{W}}$ is an open set of e such that, the closure $E_{\mathcal{W}} \cap Cl(\Omega^{-1}(U)) = \Omega^{-1}(E_{\mathcal{W}}^* \cap Cl(U))$ of $\Omega^{-1}(U)$ in $E_{\mathcal{W}}$ is $\mathbb{F}.\mathbb{W}.\mathcal{L}.U.\mathbb{C}O.(\text{resp.}, \mathbb{F}.\mathbb{W}.\mathcal{L}.L.)$.

Corollary 2.9. A function $\Omega : E \to E^*$ is a closed $\mathbb{F}.\mathbb{W}$. embedding, where E and E* are $\mathbb{F}.\mathbb{W}.T.S.$ on D. E is $\mathbb{F}.\mathbb{W}.\mathcal{L}.M.\mathbb{CO}$. when E* is $\mathbb{F}.\mathbb{W}.\mathcal{L}.M.\mathbb{CO}$.

The category of F.W. L. U. CO. (resp., F.W. L. L.). spaces is finitely multiplicative as mentioned in . .

Proposition 2.10. Let $\{E_i\}$ be finite family of $\mathbb{F}.\mathbb{W}.\mathcal{L}.U.\mathbb{CO}.(\text{resp.}, \mathbb{F}.\mathbb{W}.\mathcal{L}.L.)$ spaces on D. Then the $\mathbb{F}.\mathbb{W}.T.$ product $E = \prod_D (E_i)$ is $\mathbb{F}.\mathbb{W}.\mathcal{L}.U.\mathbb{CO}.(\text{resp.}, \mathbb{F}.\mathbb{W}.\mathcal{L}.L.)$.

11. Proof. In the same way of proof of Proposition (4).

Corollary 2.10. Let $\{E_i\}$ be finite family of $\mathcal{F}.\mathcal{W}.\mathcal{L}.M.\mathbb{CO}$. spaces on D. Then the $\mathcal{F}.\mathcal{W}.T$. product $E = \prod_D (E_i)$ is $\mathcal{F}.\mathcal{W}.\mathcal{L}.M.\mathbb{CO}$.

3. Fibrewise Multi-Compact (resp., Locally Multi-Compact) Spaces and Some Fibrewise Multi-Separation Axioms

Now we give a series of results in which give relationships between F.W.multi-compactness (F.W. locally multi-compactness in some cases) and some F.W. multi-separation axioms which are discussed in [8,9].

Definition 3.1.[9] The F.W.T.S. E on D is amed F.W. upper Hausdorff (briefly, F.W.U. Hausd.) if whenever $e_{1,e_{2}} \in E_{d}^{+}$, where in $d \in D$ and $e_{1} \neq e_{2}$, there exist separated open sets U1, U2 of e1, e2 in E.

Definition 3.2.[9] The F.W.T.S. E on D is amed F.W. lower Hausdorff (briefly, F.W.L. Hausd.) if whenever $e_{1,e_{d}} \in E_{d}^{-}$, where in $d \in D$ and $e_{1} \neq e_{2}$, there exist separated open sets U1, U2 of e1, e2 in E.

The $\mathbb{F}.\mathbb{W}.T.S. \in \mathbb{D}$ on D is amed $\mathbb{F}.\mathbb{W}$. multi-Hausdorff (briefly, $\mathbb{F}.\mathbb{W}.M$. Hausd.) if E is $\mathbb{F}.\mathbb{W}.U$. Hausd. and $\mathbb{F}.\mathbb{W}.L$. Hausd..

Definition 3.3.[9] The F.W.T.S. E on D is amed F.W. upper regular (briefly, F.W.U. re.) if for every point $e \in E_d^+$, where in $d \in D$, and for every open set V of e in E, there exists a $\eta \mathbb{P}d$ W of d in D and an open set U of e in E_w^+ such that closure of U in is E_w^+ ancluding in V (i.e. $E_w^+ \cap Cl(U) \subset V$).

Definition 3.4.[9] The F.W.T.S. E on D is amed F.W. lower regular (briefly, F.W.L. re.) if for every point $e \in E_{\overline{d}}$, where in $d \in D$, and for every open set V of e in E, there exists a $\eta \mathbb{P}d$ W of d in D and an open set U of e in $E_{\overline{w}}$ such that closure of U in is $E_{\overline{w}}$ ancluding in V (i.e. $E_{\overline{w}} \cap Cl(U) \subset V$).

The F.W.T.S. on D is amed F.W. multi- regular (briefly, F.W.M. re.), if E is F.W.U. re and F.W L. re.

Definition 3.5.[9] The F.W.T.S. E on D is amed F.W. upper normal (briefly, F.W.U. no.) if for every point d of D and every pair H, K of separated closed sets of E, there exist a $\eta \mathbb{P}d$ W of d and a pair of separated open sets U, V of $E_w^+ \cap H$, $E_w^+ \cap K$ in E_w^+ .

Definition 3.6.[9] The F.W.T.S. E on D is amed F.W. lower normal (briefly, F.W.L. no.) if for every point d of D and every pair H, K of separated closed sets of E, there exist a $\eta \mathbb{P}d$ W of d and a pair of separated open sets U, V of $E_w \cap H$, $E_w \cap K$ in E_w .

The $\mathbb{F}.\mathbb{W}.T.S.$ on D is amed $\mathbb{F}.\mathbb{W}$. multi-normal (briefly, $\mathbb{F}.\mathbb{W}.M.$ no.), if E is $\mathbb{F}.\mathbb{W}.U.$ no. and $\mathbb{F}.\mathbb{W}.L.$ no.

Proposition 3.1. Suppose that E be $\mathbb{F}. \mathbb{W}. \mathcal{L}. U. \mathbb{CO}.(\text{resp.}, \mathbb{F}. \mathbb{W}. \mathcal{L}. L. \mathbb{CO}.)$ and $\mathbb{F}. \mathbb{W}. U.$ re. (resp., $\mathbb{F}. \mathbb{W}. L.$ re.) on D. Then for every point e of Ed, where in $d \in D$, and every open set V of e in E, there exists an open set U of e in E_W^+ (resp., E_W^-) such that the closure $E_W^+ \cap Cl(U)$ (resp., $E_W^- \cap Cl(U)$) of U in E_W^+ (resp., E_W^-) is $\mathbb{F}. \mathbb{W}. U. \mathbb{CO}.(\text{resp.}, \mathbb{F}. \mathbb{W}. L. \mathbb{CO}.)$ on W and contained in V.

Proof. Let E be F.W. L. U. CO.(resp., F. W. L. L. CO.) there exists a ηPd W* of d in D and an open set U* of e in E_{W^*} such that the closure $E_{W^*}^+ \cap Cl(U^*)$ of U* in $E_{W^*}^+$ (resp., $E_{W^*}^- \cap Cl(U^*)$ of U* in $E_{W^*}^+ \cap Cl(U)$ of U in $E_{W^*}^- \cap Cl(U^*)$ is contained in $E_{W^*}^+ \cap U^* \cap V$ (resp., $E_{W^*}^- \cap Cl(U^*)$) is F.W.U. CO.(resp., F.W.L. CO.) on W, since $E_{W^*}^+ \cap Cl(U^*)$ (resp., $E_{W^*}^- \cap Cl(U^*)$) is F.W.U. CO.(resp., F.W.L. CO.) on W*, and $E_{W^*}^+ \cap Cl(U)$ (resp., $E_{W^*}^- \cap Cl(U^*)$) is F.W.U. CO.(resp., $E_{W^*}^- \cap Cl(U^*)$). Hence $E_{W^*}^+ \cap Cl(U)$ (resp., $E_{W^*}^- \cap Cl(U)$) is F.W.U. CO.(resp., $E_{W^*}^- \cap Cl(U^*)$).

Corollary 3.1. Suppose that E be \mathbb{F} . W. \mathcal{L} . M. \mathbb{CO} . and \mathbb{F} . W. M. re. on D. Then for every point e of Ed, where in $d \in D$, and every open set V of e in E, there exists an open set U of e in EW such that the closure EW \cap Cl(U) of U in E_W is \mathbb{F} . W. M. \mathbb{CO} . on W and contained in V.

Proposition 3.2. Let $\Omega : E \to F$ be an open, U. continuous(resp., L. continuous), F. W. surjection, where in E and F are F. W. T. S. on D. If E is F. W. L. U. CO.(resp., F. W. L. L. CO.) and F. W. U. re. (resp., F.W.L. re.) then, so is F.

Proof. Let f be a point of Fd, where in $d \in D$, and let V be an open set of f in F. Pick any point e of $\Omega^{-1}(f)$. Then $\Omega^{-1}(V)$ is an open set of e in E. Let E be \mathbb{F} . W. \mathcal{L} . U. \mathbb{CO} .(resp., \mathbb{F} . W. \mathcal{L} . L. \mathbb{CO} .) there exists a $\eta \mathbb{P}d$ W of d in D and an open set U of e in EW such that the closure $E_W^+ \cap Cl(U)$ (resp., $E_W^- \cap Cl(U)$) of U in E_W is \mathbb{F} . W. U. \mathbb{CO} .(resp., \mathbb{F} . W. L. \mathbb{CO} .) on W and contained in $\Omega^{-1}(V)$. Then $\Omega(U)$ is an open set of f in FW, sine Ω is open, and closure $F_W^+ \cap Cl(\Omega(U))$ of $\Omega(U)$ in F_W^+ (resp., $F_W^- \cap Cl(\Omega(U))$ of $\Omega(U)$ in F_W^- (resp., $F_W^- \cap Cl(\Omega(U))$ of $\Omega(U)$ (resp., $F_W^- \cap Cl(\Omega(U))$ of W and contained in V.

Corollary 3.2. Let $\Omega : E \to F$ be an open, M. continuous, F.W. surjection, where in E and F are F.W.T.S. on D. If E is F.W. \mathcal{L} . M. \mathbb{CO} . and F.W.M. re. then, so is F.

Proposition 3.3. Suppose that E be $\mathbb{F}.\mathbb{W}.\mathcal{L}.U.\mathbb{CO}.(\text{resp.}, \mathbb{F}.\mathbb{W}.\mathcal{L}.L.\mathbb{CO}.)$ and $\mathbb{F}.\mathbb{W}.U.$ re. (resp., $\mathbb{F}.\mathbb{W}.L.$ re.) on D. Let C be \mathbb{CO} . subset of E_d , where in $d \in D$, and since V is an open set of C in E. Then there exists a $\eta \mathbb{P}d$ W of d in D and an open set U of C in EW such that the closure $E_W^+ \cap Cl(U)$ of U in E_W^+ (resp., $E_W^- \cap Cl(U)$ of U in E_W^-) is $\mathbb{F}.\mathbb{W}.U.\mathbb{CO}.(\text{resp.}, \mathbb{F}.\mathbb{W}.L.\mathbb{CO}.)$ on W and contained in V.

Proof. Let E be F. W. L. U. CO.(resp., F. W. L. L. CO.) there exists for every point e of C a ηPd We of d in D and an open set Ue of e in EWe such that the closure $E_{We}^+ \cap Cl(U_e)$ of U_e in E_{We}^+ (resp., $E_{We}^- \cap Cl(U_e)$ of U_e in E_{We}^-) is F. W. U. CO.(resp., F. W. L. CO.) on We and contained in V. The family {Ue ; $e \in C$ } constitutes a covering of the CO. C with open sets of E. Extract a finite sub covering indexed with e_1, \ldots, e_n say. Take W to be the intersection $W_{e_1} \cap \ldots \cap W_{e_n}$, and take U to be the restriction to E_W of the union $U_{e_1} \cup \ldots \cup U_{e_n}$. Then W is a ηPd of d in D and U is an open set of C in E_W such that the closure $E_W^+ \cap Cl(U)$ of U in E_W^+ (resp., $E_W^- \cap Cl(U)$ of U in E_W^+) is F. W. U. CO.(resp., F. W. L. CO.) on W Then W E be F.EW.U. re. (resp., F.W.L. re.) there exists and contained in V.

Corollary 3.3. Suppose that E be \mathbb{F} . W. \mathcal{L} . M. \mathbb{CO} . and \mathbb{F} . W. M. re. on D. Let C be \mathbb{CO} . subset of E_d , where in $d \in D$, and since V is an open set of C in E. Then there exists a $\eta \mathbb{P}d$ W of d in D and an open set U of C in EW such that the closure $E_W^+ \cap Cl(U)$ of U in E_W^+ (resp., $E_W^- \cap Cl(U)$ of U in E_W^+) is \mathbb{F} . W. M. \mathbb{CO} . on W and contained in V.

Proposition 3.4. Let $\Omega : E \to F$ be U. p. (resp., L. p.), F. W. surjection, where in E and F are F. W. T. S. on D. If E is F. W. \mathcal{L} . U. \mathbb{CO} .(resp., F. W. \mathcal{L} . L. \mathbb{CO} .) and F. W. U. re. (resp., F. W. L. re.) then, so is F.

Proof. Let f ∈ Fd, where in d ∈ D, and let V be an open set of f in F. Then Ω⁺(V)(resp., Ω⁺(V))is an open set of Ω⁻¹(f) in E. Let E be F.W. *L*. U. CO.(resp., F.W. *L*. L. CO.). Since Ω⁻¹(f) CO., by Proposition (3.3) there exists a ηPd W of d in D and an open set U of Ω⁻¹(f) in E⁺_W(resp., E⁻_W) such that the closure E⁺_W ∩ Cl(U) (resp., E⁻_W ∩ Cl(U)) of U in E⁺_W(resp., E⁻_W) is F. W. U. CO.(resp., F. W. L. CO.) on W and contained in Ω⁺(V)(resp., Ω⁺(V)). Since Ω is closed there exists an open set U* of f in F⁺_W(resp., F⁻_W) such that Ω⁺(U*) ⊂ U(resp., Ω⁻(U*) ⊂ U). Then the closure F⁺_W ∩ Cl(U*) of U* in F⁺_W(resp., F⁻_W ∩ Cl(U*) of U* in F⁻_W) is F. W. U. CO.(resp., F. W. L. CO.) is contained in Ω(E⁺_W ∩ Cl(U))(resp., Ω(E⁻_W ∩ Cl(U*)) and so is F. W. U. CO.(resp., F. W. L. CO.) on W. Since F⁺_W ∩ Cl(U*) (resp., F⁻_W ∩ Cl(U*)) is contained in V this shows that F is F. W. *L*. CO.(resp., F. W. *L*. CO.).

Corollary 3.4. Let $\Omega : E \to F$ be U. p. (resp., L. p.), F.W. surjection, where in E and F are F.W.T.S. on D. If E is F.W. \mathcal{L} . M. \mathbb{CO} . and F.W.M. re. then, so is F.

Proposition 3.5. Let $\Omega : E \to F$ be U. continuous(resp., L. continuous) \mathbb{F} . \mathbb{W} . function, where in E is \mathbb{F} . \mathbb{W} . U. \mathbb{CO} .(resp., \mathbb{F} . \mathbb{W} . L. \mathbb{CO} .) space and F is \mathbb{F} . \mathbb{W} .U. Hausd. (resp., \mathbb{F} . \mathbb{W} .L. Hausd.) space on D. Then Ω is U. p. (resp., L. p.).

Proof. Consider the figure shown below, where in r is the standard \mathbb{F} . \mathbb{W} . T. equivalence and G is the \mathbb{F} . \mathbb{W} . graph of Ω

Now G closed embedding, with Proposition(2.10) in [8], let F be F.W.U. Hausd. (resp., F.W.L. Hausd.). Thus G is U. p. (resp., L. p.). Also X is U. p. (resp., L. p.) and so X × id_F is U. p. (resp., L. p.). Hence (X × id_F) θ G = r θ Ω is U. p. (resp., L. p.) and so Ω is U. p. (resp., L. p.), since r is a F.W. T. equivalenc.

Corollary 3.5. Let $\Omega : E \to F$ be M. continuous F.W. function, where in E is F.W.M. \mathbb{CO} . space and F is F.W.M. Hausd. space on D. Then Ω is U. p. (resp., L. p.).

Corollary 3.6. Let $\Omega : E \to F$ be M. continuous F.W. injection, where in is F.W.M. \mathbb{CO} . space and F is F.W.M. Hausd. on D. Then Ω is closed embedding

The corollary is often used in the case when Ω is surjective to show that Ω is a a F.W.T.equivalenc.

Proposition 3.6. Let $\Omega : E \to F$ be U. p. (resp., L. p.), F.W. surjection where in E and F are F.W. T. S. on D. If E is F.W.U. Hausd. (resp., F.W.L. Hausd.) then so is F.

Proof. Since Ω is U. p. (resp., L. p.) surjection so is $\Omega \times \Omega$, in the following figure

The diagonal $\Delta(E)$ closed, since E is F.W.U. Hausd. (resp., F.W.L. Hausd.), hence (($\Omega \times \Omega$)O Δ)(E) = ($\Delta O\Omega$)(E) is closed. But ($\Delta O\Omega$)(E) = Δ (F), since Ω is surjective, and so F is F.W.U. CO.(resp., F.W.L. CO.), as asserted.

Corollary 3.7. Let $\Omega : E \to F$ be M. p., F.W. surjection where in E and F are F.W. T. S. on D. If E is F.W.M. Hausd. then so is F.

Proposition 3.7. Let E be \mathbb{F} . W. U. \mathbb{CO} .(resp., \mathbb{F} . W. L. \mathbb{CO} .) and \mathbb{F} . W. U. Hausd. (resp., \mathbb{F} . W. L. Hausd.) space on D. Then E is \mathbb{F} . W. U. re. (resp., \mathbb{F} . W. L. re.).

Proof. Let e ∈ E_d, where in d ∈ D, and let U be an open set of e in E. Since E is F.W.U. Hausd. (resp., F.W.L. Hausd.) there exists for each point e^{*} ∈ E_d such that e^{*} ∉ U an open set V_{e^{*}} of e and an open set V^{*}_{e^{*}} of e^{*} which do not intersect. Now the family of open sets V^{*}_{e^{*}}, for e^{*} ∈ (E − U)⁺_d(resp., (E − U)⁺_d), forms a covering of (E − U)⁺_d(resp., (E − U)⁺_d). Since E − U is closed in E and therefore F. W. U. CO.(resp., F. W. L. CO.) there exists, by Proposition(2.2), a ηPd W of d in D such that $E^+_W - (E^+_W \cap U)$ (resp., $E^-_W - (E^-_W \cap U)$) is covered with a finite subfamily, indexed withe^{*}₁, ..., e^{*}_n, say. Now the intersection $V = V_{e_1}^e \cap ... \cap V_{e_n}^*$, is an open set of e which does not meet the open set $V^* = V_{e_1}^* \cup ... \cup V_{e_n}^*$ of $E^+_W - (E^+_W \cap U)$ (resp., $E^-_W \cap U$)(resp., $E^-_W \cap U$). Therefore the closure $E^+_W \cap Cl(V)$ of $E^+_W \cap V$ in $E^+_W \cap Cl(V)$ of $E^+_W \cap V$ in $E^+_W \cap Cl(V)$ of $E^+_W \cap V$ in $E^+_W \cap Cl(V)$ of $E^-_W \cap Cl(V)$ of $E^-_W \cap V$ in E^-_W) is contained in U, as asserted.

Corollary 3.8. Let E be F. W. M. CO. and F.W.M. Hausd. space on D. Then E is F.W.M. re..

We extend this last result to.

Proposition 3.8. Let E be \mathbb{F} . W. \mathcal{L} . U. \mathbb{CO} .(resp., \mathbb{F} . W. \mathcal{L} . L. \mathbb{CO} .) and \mathbb{F} .W.U. Hausd. (resp., \mathbb{F} .W.L. Hausd.) space on D. Then E is \mathbb{F} .W.U. re. (resp., \mathbb{F} .W.L. re.).

Proof. Let e ∈ E_d, where in d ∈ D, and let V be an open set of e in E. Since W is a ηPd W of d ∈ D and let U be an open set of e ∈ E_W such that the closure $E_W^+ \cap Cl(U)$ of U in E_W^+ (resp., $E_W^- \cap Cl(U)$ of U in $E_W^+ \cap Cl(U)$ is F.W.U. CO.(resp., F.W.L. CO.) on D. Then $E_W^+ \cap Cl(U)$ (resp., $E_W^- \cap Cl(U)$) is F.W.U. re. (resp., F.W.L. re. on W, by Proposition(3.7), since $E_W^+ \cap Cl(U)$ (resp., $E_W^- \cap Cl(U)$) is F.W.U. Hausd. (resp., F.W.L. Hausd.) on W. So there exists a ηPd W* ⊂ W of d ∈ D and an open set U* of e ∈ E_{W^*} such that the closure $E_{W^*}^+ \cap Cl(U^*)$ of U*(resp., $E_{W^*}^- \cap Cl(U^*)$ of U*) in $E_{W^*}^+$ is contained in U ∩ V ⊂ V, as required.

Corollary 3.9. Let E be F. W. L. M. CO. and F.W.M. Hausd. space on D. Then E is F.W.M. re..

Proposition 3.9. Let E be F.W.U. re. (resp., F.W.L. re.) space on D and let K be F.W.U. \mathbb{CO} .(resp., F.W.L. \mathbb{CO} .) subset of E. Let d be a point of D and let V be an open set of Kd in E. Then there exists a $\eta \mathbb{Pd}$ W of d in D and an open set U of KW in EW such that closure $E_W^+ \cap Cl(U)$ of U in E_W^+ (resp., $E_W^+ \cap Cl(U)$ of U in E_W^+) is contained in V. Proof. We may let Kd is non-empty since otherwise we can take $U = E_W^+$ (resp., E_W^-), where in W = D - X(E - V). Since V is an open set of each point e of Kd there exists, with F.W.U. re. (resp., F.W.L. re.), a $\eta \mathbb{Pd}$ W of d in D and an open set $U \in C_{We}^+$ (resp., E_{We}^-) of e such that the closure $E_{We}^+ \cap Cl(Ue)$ of Ue in $E_{We}^+ \cap Cl(Ue)$ of Ue in $E_{We}^- \cap Cl(Ue)$ of Ue in E_{We}^- of the exists a $\eta \mathbb{Pd}$ W* of d and a finite subfamily indexed with $e_1, ..., e_n$ say, which covers KW. Then the conditions are satisfied with

$$W = W^* \cap W_{e_1} \cap \dots \cap W_{e_n}, U = U_{e_1} \cup \dots \cup U_{e_n}.$$

Corollary 3.10. Let E be $\mathbb{F}.\mathbb{W}.M$. re. space on D and let K be $\mathbb{F}.\mathbb{W}.M$. \mathbb{CO} . subset of E. Let d be a point of D and let V be an open set of Kd in E. Then there exists a $\eta \mathbb{Pd}$ W of d in D and an open set U of KW in EW such that closure $\mathbb{E}_W \cap Cl(U)$ of U in \mathbb{E}_W is contained in V.

Corollary 3.11. Let E be . W. M. CO. and F.W.M. re. on D. Then E is F.W. M. no..

Proposition 3.10. Let E be F.W.U. re. (resp., F.W.L. re.) on D and let K be F.W.U. \mathbb{CO} .(resp., F.W.L. \mathbb{CO} .) subset of E. Let {Vi; i = 1, ..., n} be a covering of Kd, where in d \in D with open sets of E. Then there exists a $\eta \mathbb{P}d$ W of d and a covering {Ui; i = 1, ..., n} of KW with open sets of E_W^+ (resp., E_W^-) such that the closure $E_W^+ \cap Cl(U_i)$ of U_i (resp., $E_W^- \cap Cl(U_i)$ of U_i) in E_W^+ (resp., E_W^-) is contained in Vi.

Proof. Write $V = V_2 \cup ... \cup V_n$, so that E - V is closed in E. Hence $K \cap (E - V)$ is closed in K and so $\mathbb{F}. \mathbb{W}. U. \mathbb{C} \mathbb{O}.$ (resp., $\mathbb{F}. \mathbb{W}. L. \mathbb{C} \mathbb{O}.$). Applying the previous result to the open V1 of Kd \cap $(E - V)_d^+$ (resp., $(E - V)_d^-$) we obtain a $\eta \mathbb{P} d$ W of d and an open set U of KW $\cap (E - V)_W$ such that $E_W^+ \cap Cl(U) \subset V_1$ (resp., $E_W^- \cap Cl(U) \subset V_1$). Now $K \cap V$ and $K \cap (E - V)$ cover K, hence V and U cover KW. Thus $U = U_1$ is the first step in the shrinking process. We continue with repeating the argument for {U1, V2, ..., Vn}, so as to shrink V2, and so on. Hence the result is obtained.

Corollary 3.12. Let E be $\mathbb{F}.\mathbb{W}.M$. re. on D and let K be $\mathbb{F}.\mathbb{W}.M.\mathbb{CO}$. subset of E. Let {Vi; i = 1, ..., n} be a covering of Kd, where in $d \in D$ with open sets of E. Then there exists a $\eta \mathbb{P}d$ W of d and a covering {Ui; i = 1, ..., n} of KW with open sets of EW such that the closure $E_W^+ \cap Cl(U_i)$ of U_i (resp., $E_W^- \cap Cl(U_i)$ of U_i) in E_W is contained in Vi.

Proposition 3.11. Let $\Omega : E \to F$ be U. p. (resp., L. p.), U. open(resp., L. open) F.W. surjection, where in E and F are F.W.T.S. on D. If E is F.W.U. re. (resp., F.W.L. re.) then so is F.

Proof. Let E be F.W.U. re. (resp., F.W.L. re.). Let f be appoint of Fd, where in $d \in D$, and let V be an open set of f in F. Then $\Omega^+(V)$ (resp., $\Omega^-(V)$) is an open set of the $\mathbb{CO}.\Omega^{-1}(f)$ in E. with Proposition(3.9), therefore, there exists a $\eta \mathbb{P}d$ W of d in D and an open set U of $\Omega^{-1}(f)$ in EW such that the cloure $E_W^+ \cap Cl(U)$ of U(resp., $E_W^- \cap Cl(U)$ of U) in E_W^+ (resp., -) is contained in $\Omega^+(V)$ (resp., $\Omega^-(V)$).

Now since Ω_W is closed there exists an open set V* of f in $F_W^+(\text{resp.}, F_W^-)$ such that $\Omega^+(V^*) \subset U(\text{resp.}, \Omega^-(V^*) \subset U)$, and then the closure $E_W^+ \cap Cl(V^*)$ of V*(resp., $E_W^- \cap Cl(V^*)$ of V*) in $E_W^+(\text{resp.}, E_W^-)$ is contained in V since,

 $\begin{array}{lll} \mathrm{Cl}(\mathrm{V}^*) &= \mathrm{Cl}(\Omega(\Omega^+(\mathrm{V}^*))(\mathrm{resp.}, \ \mathrm{Cl}(\Omega(\Omega^-(\mathrm{V}^*))) &= \Omega(\mathrm{Cl}\Omega^+(\mathrm{V}^*)) \ \subset \ \Omega(\mathrm{Cl}(\mathrm{U})) \ \subset \ \Omega(\Omega^+(\mathrm{V})) \ \subset \ \Omega(\Omega^+(\mathrm{V})) \ \subset \ \Omega(\Omega^-(\mathrm{V})) \ \subset \ \Omega(\Omega^-(\mathrm{V})) \ \subset \ \Omega(\mathrm{Cl}(\mathrm{U})) \ \subset \ \Omega(\Omega^-(\mathrm{V})) \ \subset \ \Omega(\mathrm{Cl}(\mathrm{U})) \ \subset \ \Omega(\Omega^+(\mathrm{V})) \ \subset \ \Omega(\mathrm{Cl}(\mathrm{U})) \ \subset \ \Omega(\Omega^+(\mathrm{V})) \ \subset \ \Omega(\mathrm{Cl}(\mathrm{U})) \ \subset$

Thus, F is F.W.U. re. (resp., F.W.L. re.), as asserted.

Corollary 3.13. Let $\Omega: E \to F$ be U. p. (resp., L. p.), M. open F.W. surjection, where in E and F are F.W.T.S. on D. If E is F.W.M. re. then so is F.

Acknowledgments

The authors would like to thank all those who helped them during writing this article.

References

- [1] Abo Khadra, S. S. Mahmoud and Y. Y. Yousif, fibrewise near topological spaces, Journal of Computing, USA, Vol 4, Issue 5, May (2012), pp. 223-230.
- [2] Amira R. Kadzam and Y. Y. Yousif, Fibrewise Totally Separation Axioms, Journal of Interdisciplinary Mathematics, Taylar & Francis Publications, DOI: 10.1080/09720502.2021.2003012, Vol. 25, No. 2, pp.511-520, 2022.
- [3] G. S. Ashaea and Y. Y. Yousif, Some Types of Mappings in Bitopological Spaces, Baghdad Science Journal, University of Baghdad – Collage of Science for Woman, Published Online First: December 2020, DOI: http://dx.doi.org/10.21123/bsj.2020.18.1.0149, Vol. 18, No.1, PP.149-155, 2021.
- [4] G. S. Ashaea and Y. Y. Yousif, Weak and Strong Forms of ω-Perfect Mappings, Iraqi Journal of Science, University of Baghdad, The 1st Conferences of Mathematics Held at Mustansiriyah University – College of Basic Education in 5-6 Feb. 2020, DOI:10.24996/ijs.2020.SI.1.7, Special Issue (2020) PP.45-55, 2020.
- [5] Banzaru, T., Multi-functions and M-product spaces, Bull. Stin. Tech. Inst. Politech. Timisoara, Ser. Mat. Fiz. Mer. Teor. Apl., 17 (31) (1972), 17-23.
- [6] N. Bourbaki. General Topology, Part 1, Addison Wesley, Reading, Mass, 1996.
- [7] R. Englking, Outline of general topology, Amsterdam, 1989.
- [8] I. M. James, fibrewise topology, Cambridge University Press, London 1989.
- [9] M. H. Jabera and Y.Y. Yousif, Fibrewise Multi-Topological Spaces, International Journal of Nonlinear Analysis and Applications, Semnan University, doi: 10.22075/IJNAA.2022.6109, Vol. 13, No. 1, pp.3463-3474, 2022.
- [10] S. N. Maheshwari, S. S. Thakar, On α-compact spaces, Bull. Inst. Math. Acad. Sinica, Vol. 13 (1982), pp. 341-347.
- [11] A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, On pre continuous and weak pre continuous mappings, Proc. Math. Phys. Soc. Egypt, Vol. 53 (1982), pp. 47-53.
- [12] A. S. Mashhour, M. E. Abd El-Monsef, I. A. Hassanien, T. Noiri, Strongly Compact spaces, Delta J. Sci., Vol. 8, No. 1 (1984), pp. 30-46.
- [13] Mohammed G. Mousa and Y. Y. Yousif, Fibrewise Slightly Separation Axioms, Journal of Interdisciplinary Mathematics, Taylar & Francis Publications, DOI: 10.1080/09720502.2021.1964733, Vol. 24, No. 7, pp.1885-1890, 2021.
- [14] N. F. Mohammed and Y. Y. Yousif, Connected Fibrewise Topological Spaces, Journal of Physics: Conference Series, IOP Publishing, 2nd. ISC-2019 College of Science, University of Al-Qadisiyah Scientific Conference, 24-25 April 2019, Iraq, Volume 1294, (2019) doi :10.1088/1742-6596/1294/1/032022, pp. 1-6, 2019.
- [15] Y. Y. Yousif, L. A. Hussain and M. A. Hussain, Fibrewise Soft Bitopological Spaces, Journal of Interdisciplinary Mathematics, Taylar & Francis Publications, DOI: 10.1080/09720502.2021.1966948, Vol. 24, No. 7, pp.1925-1934, 2021.
- [16] Y. Y. Yousif, Fibrewise ω-Compact and Locally ω-Compact Spaces, Journal of Interdisciplinary Mathematics, Taylar & Francis Publications, DOI: 10.1080/09720502.2021.1964730, Vol. 24, No. 7, pp. 1863-1869, 2021.
- [17] Y. Y. Yousif, M. A. Hussain and L. A. Hussain, Fibrewise Pairwise Soft Separation Axioms, Journal of Physics: Conference Series, IOP Publishing, 1st. ISCPS-2019 University of Al-Qadisiyah Scientific Conference, 23-24 Jan 2019, Volume 1234, doi:10.1088/1742-6596/1234/1/012113, pp. 1-17, 2019.
- [18] Yousif Y. Yousif and Mohammed A. H. Ghafel, Fibrewise Soft Ideal Topological Spaces, Journal of Physics: Conference Series, IOP Publishing, Ibn Al-Aaitham 1st. International Scientific Conference, 2017, 13-14 December 2017, Volume 1003 (2018) doi:10.1088/1742-6596/1003/1/012050, pp. 1-12, 2018.