In the present study, Čech fuzzy soft bi-closure spaces (Čfs bi-csp’s) are defined. The basic properties of Čfs bi-csp’s are studied such as we show from each Čfs bi-csp’s (
The basic concepts of some near open subgraphs, near rough, near exact and near fuzzy graphs are introduced and sufficiently illustrated. The Gm-closure space induced by closure operators is used to generalize the basic rough graph concepts. We introduce the near exactness and near roughness by applying the near concepts to make more accuracy for definability of graphs. We give a new definition for a membership function to find near interior, near boundary and near exterior vertices. Moreover, proved results, examples and counter examples are provided. The Gm-closure structure which suggested in this paper opens up the way for applying rich amount of topological facts and methods in the process of granular computing.
The aim of this paper is to introduce and study new class of fuzzy function called fuzzy semi pre homeomorphism in a fuzzy topological space by utilizing fuzzy semi pre-open sets. Therefore, some of their characterization has been proved; In addition to that we define, study and develop corresponding to new class of fuzzy semi pre homeomorphism in fuzzy topological spaces using this new class of functions.
The aim of this research is to study some types of fibrewise fuzzy topological spaces. The six major goals are explored in this thesis. The very first goal, introduce and study the notions types of fibrewise topological spaces, namely fibrewise fuzzy j-topological spaces, Also, we introduce the concepts of fibrewise j-closed fuzzy topological spaces, fibrewise j-open fuzzy topological spaces, fibrewise locally sliceable fuzzy j-topological spaces and fibrewise locally sectionable fuzzy j-topological spaces. Furthermore, we state and prove several Theorems concerning these concepts, where j={δ,θ,α,p,s,b,β} The second goal is to introduce weak and strong forms of fibrewise fuzzy ω-topological spaces, namely the fibrewise fuz
... Show MoreIn this thesis, we introduced some types of fibrewise topological spaces by using a near soft set, various related results also some fibrewise near separation axiom concepts and a fibrewise soft ideal topological spaces. We introduced preliminary concepts of topological spaces, fibrewise topology, soft set theory and soft ideal theory. We explain and discuss new notion of fibrewise topological spaces, namely fibrewise soft near topological spaces, Also, we show the notions of fibrewise soft near closed topological spaces, fibrewise soft near open topological spaces, fibrewise soft near compact spaces and fibrewise locally soft near compact spaces. On the other hand, we studied fibrewise soft near forms of the more essent
... Show MoreOur main interest in this study is to look for soft semi separations axioms in soft quad topological spaces. We talk over and focus our attention on soft semi separation axioms in soft quad topological spaces with respect to ordinary points and soft points. Moreover study the inherited characteristics at different angles with respect to ordinary points and soft points. Some of their central properties in soft quad topological spaces are also brought under examination.
The main purpose of this work is to introduce some types of fuzzy convergence sequences of operators defined on a standard fuzzy normed space (SFN-spaces) and investigate some properties and relationships between these concepts. Firstly, the definition of weak fuzzy convergence sequence in terms of fuzzy bounded linear functional is given. Then the notions of weakly and strongly fuzzy convergence sequences of operators are introduced and essential theorems related to these concepts are proved. In particular, if ( ) is a strongly fuzzy convergent sequence with a limit where linear operator from complete standard fuzzy normed space into a standard fuzzy normed space then belongs to the set of all fuzzy bounded linear operators
The main purpose from this paper is to introduce a new kind of soft open sets in soft
topological spaces called soft omega open sets and we show that the collection of
every soft omega open sets in a soft topological space (X,~,E) forms a soft topology
~
on X which is soft finer than ~
. Moreover we use soft omega open sets to define
and study new classes of soft functions called weakly soft omega open functions and
weakly soft omega closed functions which are weaker than weakly soft open functions
and weakly soft closed functions respectively. We obtain their basic properties, their
characterizations, and their relationships with other kinds of soft functions between
soft topological spaces.<
In the present paper we introduce and study new classes of soft separation axioms in soft bitopological spaces, namely, soft (1,2)*-omega separation axioms and weak soft (1,2)*-omega separation axioms by using the concept of soft (1,2)*-omega open sets. The equivalent definitions and basic properties of these types of soft separation axioms also have been studied.