The concepts of higher Bi- homomorphism and Jordan higher Bi- homomorphism have been introduced and studied the relation between Jordan and ordinary higher Bi- homomorphism also the concepts of Co- higher Bi- homomorphism and Co- Jordan higher Bi- homomorphism introduced and the relation between them in Banach algebra have also been studied.
In this paper, we introduce the concept of Jordan –algebra, special Jordan –algebra and triple –homomorphisms. We also introduce Bi - –derivations and Annihilator of Jordan algebra. Finally, we study the triple –homomorphisms and Bi - –derivations on Jordan algebra.
In this paper, the concept of Jordan triple higher -homomorphisms on prime
rings is introduced. A result of Herstein is extended on this concept from the ring into the prime ring . We prove that every Jordan triple higher -homomorphism of ring into prime ring is either triple higher -homomorphism or triple higher -anti-homomorphism of into .
In this article, the additivity of higher multiplicative mappings, i.e., Jordan mappings, on generalized matrix algebras are studied. Also, the definition of Jordan higher triple product homomorphism is introduced and its additivity on generalized matrix algebras is studied.
Let M is a Г-ring. In this paper the concept of orthogonal symmetric higher bi-derivations on semiprime Г-ring is presented and studied and the relations of two symmetric higher bi-derivations on Г-ring are introduced.
n this paper , we prove that if T is a 2-torsion free triangular ring and be a family of additive mapping then satisfying is a higher centralizer which is means that is Jordan higher centralizer on 2-torsion free triangular ring if and only if is a higher centralizer and also we prove that if be a family of additive mapping satisfying the relation Σ , Then is a higher centralizer.
In this paper a Г-ring M is presented. We will study the concept of orthogonal generalized symmetric higher bi-derivations on Г-ring. We prove that if M is a 2-torsion free semiprime Г-ring , and are orthogonal generalized symmetric higher bi-derivations associated with symmetric higher bi-derivations respectively for all n ϵN.
In this paper, we introduce the concepts of higher reverse left (resp.right) centralizer, Jordan higher reverse left (resp. right) centralizer, and Jordan triple higher reverse left (resp. right) centralizer of G-rings. We prove that every Jordan higher reverse left (resp. right) centralizer of a 2-torsion free prime G-ring M is a higher reverse left (resp. right) centralizer of M.
In this paper, we study the effect of group homomorphism on the chain of level subgroups of fuzzy groups. We prove a necessary and sufficient conditions under which the chains of level subgroups of homomorphic images of an a arbitrary fuzzy group can be obtained from that of the fuzzy groups . Also, we find the chains of level subgroups of homomorphic images and pre-images of arbitrary fuzzy groups
The study of homomorphisms in cubic sets is considered one of the important concepts that transfer algebraic properties between different structures, so we study a homomorphism of a cubic set of a semigroup in a KU-algebra and defined the product of two cubic sets in this structure. Firstly, we define the image and the inverse image of a cubic set in a KU-semigroup and achieve some results in this notion. Secondly, the Cartesian product of cubic subsets in a KU-semigroup is discussed and some important characteristics are proved.
The concept of fully pseudo stable Banach Algebra-module (Banach A-module) which is the generalization of fully stable Banach A-module has been introduced. In this paper we study some properties of fully stable Banach A-module and another characterization of fully pseudo stable Banach A-module has been given.