Al-Qadisiyah Journal of Pure Science Vol.(27) Issue (1)(2022) pp. 147-169

[http://qu.edu.iq/journalsc/i](http://qu.edu.iq/journalsc/index.php/JOPS)

Weakly and Strongly Forms of Fibrewise Fuzzy ω-Topological Spaces

1. **Introduction and Preliminaries.**

In order to began the category in the classification of fibrewise (shortly, $f(w)$) sets on a given set, named the base set, which say *B*. A *fw* set on *B* consist of a set *M* with a function $p: M \rightarrow B$ that is named the projection(shortly., proj.). The fibre over *b* for every point *b* of *B* is the subset $M_b = p^{-1}(b)$ of *M*. Perhaps, fibre will be empty because we do not require is surjective, also, for every subset *B*^{*} of *B* we considered $M_{B^*} = p^{-1}(B^*)$ as a fw set over *B*^{*} with the projection determined by *p*. The concept of fuzzy sets was introduced by Zadeh [18]. The idea of fuzzy topological spaces was introduced by Chang [6]. The concept of fuzzy ω continuity, fuzzy almost ω -continuous and fuzzy weakly ω -continuous in topological spaces was introduced by Gazwan [1]. In this paper, we introduce and study seven weak and strong forms of fibrewise fuzzy topological spaces, called fibrewise fuzzy *ω-*topological spaces, fibrewise fuzzy almost *ω-*topological spaces, fibrewise fuzzy almost weakly *ω-* topological spaces, fibrewise fuzzy weakly θ - ω -topological spaces, fibrewise fuzzy θ - ω -topological spaces, fibrewise fuzzy strongly $θ$ -ω- topological spaces and fibrewise fuzzy almost strongly *ω-* topological spaces, we study their basic properties and we shall discuss relationships between weakly fibrewise fuzzy θ - ω -topological spaces and strongly fibrewise fuzzy θ - ω topological spaces, we built on some of the result in [3,4,15,16,17].

Definition 1.1. [8] A mapping $\vartheta : M \to N$, where M and N are FW sets over B, with proj.'s $p_M : M \to B$ and $p_N : N \to B$, is said to be FW mapping (written as FW-M) if $p_N \circ \vartheta =$ p_M , or $\vartheta(M_h) \subseteq N_h$, for all point $h \in B$.

Observe that a FW-M $\vartheta : M \to N$ over B limited by restriction, a FW-M $\vartheta : M_{B^*}$ N_{B^*} over B^* for all subset $B^* \subseteq B$.

Definition 1.2. [8] The fibrewise topology (written as FWT) on a FW set M over a topological space (B, σ) signify any topology on M for which the proj. p is continuous (written as FWTS).

Definition 1.3. [8] Let M and N be FWTS's over B, the FW-M $\vartheta : M \to N$ is said to be:

- (a) continuous if $b \in B$ and for all point $m \in M_b$, the pre image of all open set of $\vartheta(m)$ is an open set of m.
- (b) open if $b \in B$ and for all point $m \in M_h$, the image of all open set of m is an open set of $\vartheta(m)$.

Definition 1.4. [8] The FWTS (M, τ) over (B, σ) is said to be:

- (a) FW closed (written as FWC) if the proj. p is closed mapping.
- (b) FW open (written as FWO) if the proj. p is open mapping.

Definition 1.5. [18] assume that M is a nonempty set, a fuzzy set μ in M is a mapping $\chi_{\mu}: M \longrightarrow I$ where I is the closed unite interval [0, 1] which is written as:

 $\mu = \{ (m, \chi_{\mu}(m)) : m \in M, 0 \leq \chi_{\mu}(m) \leq 1 \},\$

The family of each fuzzy subsets in M will be symbol by I^M thus is $I^M = \{ \mu : \mu \text{ is fuzzy subset } \}$ of μ } and χ_{μ} is called the membership function.

Example 1.6. [12] We will suppose a possible membership function for the fuzzy set of real numbers close to zero as follows, $\chi_{\mu} : \mathbb{R} \longrightarrow [0,1]$, where

Definition 1.7. [18] A fuzzy set in M is empty denoted by $\overline{0}_{\mu}$, if its membership function is identically the zero function, i.e.,

 $\overline{0}_{\mu}$: *M* \rightarrow [0,1] s.t $\overline{0}_{\mu}$ ($\forall m \in M.$

Definition 1.8. [18] A universal fuzzy set in M, denoted by $\overline{1}_{\mu}$, is a fuzzy set defined as $\overline{1}_{\mu}(m) = 1 \forall m \in M.$

Definition 1.9. [18] Let μ , $\lambda \in I^M$. A fuzzy set μ is a subset of an fuzzy set λ , denoted by $\mu \leq \lambda$ iff $\mu(m) \leq \lambda(m)$, $\forall m \in M$.

Two fuzzy sets μ and λ are said to be equal $(\lambda = \mu)$ if $\lambda(m) = \mu(m)$, $\forall m \in M$.

Definition 1.10. [18] Let λ and μ be fuzzy sets in M. Then, for all $m \in M$, $\psi = \lambda \vee \mu \Leftrightarrow \psi(m) = \max \{ \lambda(m), \mu(m) \},$ $\delta = \lambda \wedge \mu \Leftrightarrow \delta(m) = \min \{ \lambda(m), \mu(m) \},$ $\eta = \lambda^c$

More generally, for a family $\Lambda = {\lambda_i | i \in I}$ of fuzzy sets in M, the union $\psi = V_i \lambda_i$ and intersection $\delta = \Delta_i \lambda_i$ are defined by

$$
\psi(x) = \sup_i \{ \lambda_i(m) \mid m \in M \},
$$

$$
\delta(x) = \inf_i \{ \delta_i(m) \mid m \in M \}.
$$

Definition 1.11*.* [6] A fuzzy topology is a family τ of fuzzy sets in M, which satisfies the following conditions:

- (a) $\overline{0}$, $\overline{1} \in \tau$;
- (b) If $\lambda, \mu \in \tau$, thus $\lambda \wedge \mu \in \tau$;
- (c) If $\lambda_i \in \tau$ for all $i \in I$, thus $\vee_i \lambda_i \in \tau$.

 (M, τ) is said to be fuzzy topological spaces and each member of τ is named fuzzy open set on M and its complement is fuzzy closed set.

Definition 1.12. [10] A fuzzy set on *M* is named a fuzzy point iff it takes the value 0 for each $y \in M$ except one, say, $m \in M$. If its value at m is r ($0 \le r \le 1$) we denote thus fuzzy point by m_r , when the point m is named its support.

Definition 1.13. [6,14] Let μ be a fuzzy set and let (M, τ) be a fuzzy topological space. μ is a fuzzy neighborhood of a fuzzy point m_r if there exist a fuzzy open set ν since $\mu(m)$, $\forall m \in M$.

Definition 1.14. [6] assume that (M, τ) is a fuzzy topological space as well $\mu \in I^M$. The fuzzy closure (fuzzy interior) of *A* is symbol by $cl(\mu)$ (*int*(μ)) is defined by:

$$
cl(\mu) = \Lambda \{ \lambda^c \in \tau, \ \mu \le \lambda \}
$$

$$
int(\mu) = \bigvee \{ \xi \in \tau; \xi \le \mu \}.
$$

Evidently, $cl((\mu)$ (resp., $int(\mu)$) is the smallest fuzzy closed (resp., largest fuzzy open) subset of M which contains (resp., contained in) μ . Note that μ is fuzzy closed (fuzzy open) iff μ = $cl(\mu)$ (resp., $int(\mu)$).

Definition 1.15. [6] assume that $f : M \rightarrow N$ is a mapping. For a fuzzy set β in N and membership function $\beta(n)$. The inverse image of β under f is the fuzzy set $f^{-1}(\beta)$ in M with membership function is denoted by the rule:

 $f^{-1}(\beta)(m) = \beta(f(m)), \forall m \in M.$ (1)

For a fuzzy set λ in *M*, the image of λ under *f* is the fuzzy set $f(\lambda)$ in *B* with membership function $f(\lambda)(n)$, $n \in N$ is given by

Definition 1.16. [2] Assume that m_r is a fuzzy point and μ a fuzzy set in M. Then m_r is said to be in μ or (belong to μ) or (m_r content in μ) denoted $m_r \in \mu$ if and only if $r \leq \mu(m)$, for all $m \in M$

Definition 1.17. [9,19] The set $\{m : m \in M, \mu(m) > 0\}$ is called the support of μ and is denoted by $\text{Supp}(\mu)$

Definition 1.18. [10] A fuzzy point m_r is said to be quasi-coincident with μ denoted by $m_r q \mu$ if there exist $m \in M$ such that $r + \mu(m) > 1$, if m_r is not quasi coincident with μ , then $r + \mu(m) \leq 1$ $\forall m \in M$ and denoted by $m_r \tilde{q} \mu$.

Definition 1.19. [10] A fuzzy set μ in (M, τ) is called a "Q-neighborhood of m_{λ} " iff $\exists \nu \in \tau$ such that $m_{\lambda} q \nu < \mu$.

The family of all Q-nbhd's of m_{λ} is called the system of Q- nbhd's of m_{λ} .

Definition 1.20. [2] Fuzzy regular space if for each fuzzy point m_r in *M* and each fuzzy closed set F with $m_r \tilde{q}F$ there exists fuzzy open μ , λ in M such that $r \leq \mu(m)$, $F(m) \leq$ $\lambda(m)$ \forall m \in M and $\mu \tilde{q} \lambda$.

Definition 1.21. [11] A fuzzy set μ is fuzzy θ -closed if $\mu = cl_{\theta}(\mu) = \{m_r \text{ fuzzy point in }$ (M, τ) : *(cl (v)) q µ, U* is fuzzy open *q*-nbd. of m_r . The complement of fuzzy θ -closed called fuzzy θ -open set.

Definition 1.22. [14] Let μ be a fuzzy set in a fuzzy topological space (M, τ) is named a fuzzy uncountable iff supp (μ) is an uncountable subset of M.

Definition 1.23. [1] A fuzzy point m_r of a fuzzy topological space (M, τ) is named a fuzzy condensation point of μ on M if min{ μ (m), λ (m)} is fuzzy uncountable for each fuzzy open set λ containing m_r. And the set of all fuzzy condensation point of μ is denoted by Cond (μ)

Definition 1.24. [1] A fuzzy subset μ in a fuzzy topological space (M , τ) is called a fuzzy ω closed set if it contains each its fuzzy condensation point. The complement fuzzy ω -closed sets are called fuzzy ω -open sets. And the family of all fuzzy ω -open (resp.fuzzy ω -closed) sets in a fuzzy topological space (M, τ) will be denoted by f. ω -open (resp. f. ω -closed).

Definition 1.25. [1] Assume that μ is a fuzzy set of a fuzzy topological space (M, τ) then The ω -closure of μ is symbol by $cl^{\omega}(\mu)$ and known that by $cl^{\omega}\mu(m) = inf\{F(m): F \text{ is a fuzzy}\}\$ ω-closed set in, $(m) \leq F(m)$.

Definition 1.26.[1] For a fuzzy topological space (M, τ) is named a fuzzy ω -regular space when all fuzzy ω -closed subset μ in M so well a fuzzy point m_r in M so that $m_r \hat{q}$ μ , there exists two fuzzy ω-open sets λ and ν such that $r \leq \lambda(m)$, $\mu(m) \leq \nu(m)$ and $\lambda \overline{\mathfrak{g}} \nu$

Definition 1.27. [6] A mapping ϕ : $(M, \tau) \rightarrow (N, \Lambda)$ is said to be

- (a) fuzzy continuous (briefly f. continuous) if the inverse image of every fuzzy open set of *N* is a fuzzy open set in M .
- (b) fuzzy open (briefly f. open) map if the image of every fuzzy open set of M is a fuzzy open set in N .

(c) fuzzy close (briefly f. close) map if the image of every fuzzy close set of M is a f. close set in N .

Definition 1.28. [13] A mapping $\phi: (M, \tau) \to (N, \Lambda)$ is said to be Fuzzy θ -continuous (f. θ , continuous, for short) if for each fuzzy point m in (M, τ) and each fuzzy open q-nbd. α of $\phi(m)$, there exists fuzzy open q-nbd. u of m so that $p(cl(u)) \leq cl(v)$.

Definition 1.29. [1] A mapping ϕ : $(M, \tau) \rightarrow (N, \Lambda)$ is said to be

- (a) Fuzzy ω-continuous at a fuzzy point $m \in M$ when all fuzzy open subset λ in N contains $\phi(m)$ there exists a fuzzy ω -open subset μ on M which contains m so that $\phi(\mu) \leq \lambda$ so well ϕ is called fuzzy ω-continuous if it is fuzzy ω-continuous at every fuzzy point.
- (b) Fuzzy almost ω -continuous at a fuzzy point $m \in M$ when all fuzzy open subset λ in N contains $\phi(m)$ there exists a fuzzy ω -open subset μ of M which contains m so that $\phi(\mu) \leq int(cl(\lambda))$ so well ϕ is named fuzzy almost ω -continuous if it is fuzzy almost ω -continuous at every fuzzy point.
- (c) Fuzzy weakly ω-continuous at a fuzzy point $m \in M$ when all fuzzy open subset λ in N contains $\phi(m)$ there exists a fuzzy ω -open subset μ of M which contains m so that $\phi(\mu) \leq cl(\lambda)$ so well ϕ is named fuzzy ω-continuous if it is fuzzy ω-continuous at every fuzzy point.

2- Weakly Fibrewise Fuzzy θ-ω-Topological Spaces

In this section, we study the weakly fibrewise fuzzy θ - ω -topological spaces and some theorems concerning them.

First, we introduced the following definition.

Definition 2.1. A mapping $\phi: (M, \tau) \to (N, \Lambda)$ is said to be fuzzy almost weakly θ - ω -continuous (briefly, f. almost weakly θ - ω -continuous) if in a fuzzy point $m \in M$ when all fuzzy open subset λ in N contains $\phi(m)$ there exists a fuzzy ω -open subset μ of M which contains m so that $\phi(\mu) \leq cl(\lambda)$ so well ϕ is named fuzzy almost weakly ω-continuous if its fuzzy almost weakly ω-continuous at every fuzzy point.

Definition 2.2. A mapping $\phi: (M, \tau) \to (N, \Lambda)$ is said to be fuzzy θ - ω -continuous (briefly, f. θ - ω continuous) at a fuzzy point $m \in M$ when all fuzzy open subset λ in N contains $\phi(m)$ there exists a fuzzy ω-open subset μ of M which contains m so that $\phi(cl^{\omega}(\mu)) \leq cl(\lambda)$ as well ϕ is named fuzzy -ω-continuous if its fuzzy -ω-continuous at every fuzzy point*.*

Definition 2.3. A fuzzy set *A* is fuzzy θ - ω -closed if $A = cl_{\theta}^{\omega}(A) = \{p \text{ fuzzy point in } (X, \tau) :$ (cl^{ω} (U)) q A, U is fuzzy ω -open q-nbd. of p}. The complement of fuzzy θ - ω -closed called fuzzy θ - ω -open set.

Definition 2.4. A mapping $\phi: (M, \tau) \rightarrow (N, \Lambda)$ is said to be fuzzy weakly θ - ω -continuous (briefly, f. weakly θ - ω -continuous) if in a fuzzy point $m \in M$ when all fuzzy open subset λ in N contains $\phi(m)$ there exists a fuzzy θ -ω-open subset μ of M which contains m so that $\phi(\mu) \leq cl(\lambda)$ so well ϕ is named fuzzy weakly $θ$ -ω-continuous if its fuzzy weakly $θ$ -ω-continuous at every fuzzy point.

Definition 2.5. Let (B, σ) be a fuzzy topological space the fibrewise fuzzy ω -topological spaces, fibrewise fuzzy almost weakly ω -topological spaces, fibrewise fuzzy almost ω topological spaces, fibrewise fuzzy weakly θ - ω -topological spaces and fibrewise fuzzy θ - ω topological spaces (briefly, FWF ω -top. sp., FWF almost weakly ω -top. sp., FWF almost ω top. sp., FWF weakly θ - ω -top. sp. and FWF θ - ω -top. sp.) on a fibrewise set M over B mean any fuzzy topology on M which of them the projection function p are fuzzy ω -continuous, fuzzy almost weakly ω -continuous, fuzzy almost ω -continuous, fuzzy weakly θ - ω continuous and fuzzy θ - ω -continuous (briefly, f. ω -continuous, f. almost weakly ω continuous, f. almost ω -continuous, f. weakly θ - ω -continuous and f. θ - ω -continuous).

Theorem 2.6. The FWF topological space (M, τ) over (B, σ) is FWF ω -top. sp., then it is FWF almost ω -top. sp..

Proof. Assume that (M, τ) is a FWF ω -top. sp. over (B, σ) , then the proj. $p: (M, \tau) \rightarrow (B, \sigma)$ f. ω -continuous. It suffices to demonstrate that p is f. almost ω -continuous. Assume that $m \in M_h$; $b \in B$ and, μ is a fuzzy open set contains $p(m)$ in B. Since p is f. ω -continuous, there is a f. *ω*-open set λ containing m so that $p(\lambda) \leq \mu$. Thus, $int(\mu) \leq \mu$ and $\mu \leq cl(\mu)$. Then, $int(\mu) \leq cl(\mu)$ and $int(int(\mu) \leq int(c l(\mu))$. It follows that, $p(\lambda) \leq int(c l(\mu))$. Therefore $p(\lambda) \leq int(\ell(\mu))$. So, p is f. almost ω -continuous. Hence (M, τ) is FWF almost ω -top. sp..

We can prove the same way by used property of fuzzy interior and fuzzy closure set.

The converses does not hold as we show by the following examples:

Example 2.7. Let $M = \{a, b, c\}$, $B = \{x, y, z\}$, $\tau = \{\overline{0}, \overline{1}, \mu_1, \mu_2, \mu_3\}$ where $\mu_1 = \{(a, 0.1)\}\$ $\mu_2 = \{(b, 0.2)\}\$ $\mu_3 = \{(a, 0.1), (b, 0.2)\}\$ And let $\sigma = {\overline{0}, \overline{1}, \lambda}$, where $\lambda = {\overline{z}, \lambda}$ be the fuzzy topologies on set *M* and *B* respectively and let the projection function $p: (M, \tau) \to (B, \sigma)$ be the fuzzy function as

 $p(a) = p(b) = p(c) = z$. Let $\lambda = \{(a, 0.1)\}\)$ fuzzy open in M and $\nu = \{(b, 0.2)\}\)$. Then, $p(cl{(b, 0.2)}) \leq cl{(a, 0.1)}$ but $p({{(b, 0.2)}}) \not\leq int(cl({{(a, 0.1)}})$. Then, (M, τ) is FWF θ - ω -top. sp. but not FWF almost ω -top. sp. .

 $p(a) = y$, $p(b) = x$, $p(c) = z$. Let $\eta = \{(a, 0.5), (b, 0.5), (c, 0.5)\}\$ fuzzy θ - ω -open in M and

Example 2.8. Let $M = \{a, b, c\}$, $B = \{x, y, z\}$, $\tau = \{\overline{0}, \overline{1}, \mu_1, \mu_2\}$ where $\mu_1 = \{(a, 0.3), (b, 0), (c, 0.5)\}\$ $\mu_2 = \{(a, 0.7), (b, 1), (c, 0.5)\}\$ And let $\sigma = {\overline{0}, \overline{1}, \lambda}$, where $\lambda = \{(x, 0), (y, 0.3), (z, 1)\}$ be the fuzzy topologies on set M and *B* respectively and let the projection function $p: (M, \tau) \to (B, \sigma)$ be the fuzzy function as $v = \{(a, 0), (b, 0.3), (c, 0.5)\}\$ is fuzzy open in B. Then, $p(\eta) \leq cl(\nu)$ but $p(cl(\eta)) \nleq cl(\nu)$. Then, (M, τ) is FWF weakly θ - ω -top. sp. but not FWF θ - ω -top. sp..

Example 2.9. In Example 2.6, (M, τ) over (B, σ) is a FWF weakly θ - ω -top. sp., but is not FWF ω -top. sp.. Moreover, (M, τ) over (B, σ) is FWF weakly θ - ω -top. sp., but is not FWF almost ω -top. sp.. Moreover, (M, τ) over (B, σ) is FWF almost weakly ω -top. sp., but is not FWF θ - ω -top. sp., and not FWF ω -top. sp.

Example 2.10. Let = $\{a, b\}$, $B = \{x, y\}$, $\tau = \{\overline{0}, \overline{1}, \mu_1, \mu_2, \mu_3\}$ where $\mu_1 = \{(a, 0.9), (b, 0.7)\}\$ $\mu_2 = \{(a, 1), (b, 0.9)\}\$ $\mu_3 = \{(a, 0.11), (b, 0.31)\}\$ And let $\sigma = {\overline{0}, \overline{1}, \lambda}$, where $\lambda = \{(x, 0.11), (y, 0.31)\}$ be the fuzzy topologies on set *M* and *B* respectively and let the projection function $p: (M, \tau) \rightarrow (B, \sigma)$ be the fuzzy function as $p(a) = x$, $p(b) = y$. Let $\eta = \{(a, 0.7), (b, 0.4)\}$ fuzzy ω -open in M and $\nu = \{(a, 0.11), (b, 0.31)\}\$ is fuzzy open in B. Then, $p(\eta) \leq int(cl(\nu))$ but $p(\eta) \leq \nu$. Then, (M, τ) is FWF almost ω -top. sp. but not FWF ω -top. sp. . Moreover, (M, τ) is FWF almost

weakly ω -top. sp. but not FWF almost ω -top. sp. .

Lemma 2.11. [1] A fuzzy topological space (M, τ) is fuzzy ω -regular if and only if for all fuzzy point m in M and all fuzzy ω -open μ containing m, there exists fuzzy ω -open set λ such that $m \in \lambda \leq cl^{\omega}(\lambda) \leq \mu$.

Theorem 2.12. Let (M, τ) be a fuzzy ω -regular space. The FWF topological space (M, τ) over (B, σ) is FWF almost weakly ω -top. sp., then it is FWF θ - ω -top. sp..

Proof. Let (M, τ) be a FWF almost weakly ω -top. sp. over (B, σ) , then the proj. $p: (M, \tau) \rightarrow$ $f(B, \sigma)$ f. almost weakly *ω*-continuous. It suffices to demonstrate that p is f. θ -*ω*-continuous. Assume that $m \in M_b$; $b \in B$ so well, μ is a fuzzy open set containing $p(m)$ in B. Since p is f. almost weakly ω -continuous, there exists is a f. ω -open set λ containing m such that $p(\lambda) \leq c l(\mu)$. Because (M, τ) is a fuzzy ω -regular space, by Lemma 2.12, there is η fuzzy ω -open in M_h , $b \in B$ so that $m \in \eta \leq cl^{\omega}(\eta) \leq \lambda$. Therefore, $p(cl^{\omega}(\eta)) \leq cl(\mu)$. Then, p is f. θ - ω -continuous. Then (M, τ) is FWF θ - ω -top. sp..

Corollary 2.13. Let (M, τ) be an fuzzy ω -regular space. The FWF topological space (M, τ) over (B, σ) is FWF almost weakly ω -top. sp. if and only if it is FWF θ - ω -top. sp..

Theorem 2.14. Assume that $\phi : (M, \tau) \to (N, \Lambda)$ is a f. ω -continuous fibrewise surjection function, when (M, τ) so well (N, Λ) are FWF topological spaces on (B, σ) . If (N, Λ) is a FWF almost weakly ω -top. sp., then (M, τ) is so.

Proof: Assume that $m \in M_h$, $b \in B$ and λ be a fuzzy open set containing $p_M(m)$ in B, since p_N is f. almost weakly ω -continuous, there exists is a fuzzy open set μ containing $\phi(m)$ in N_b , $b \in B$ such that $p_N(\mu) \leq cl(\lambda)$. Since ϕ is f. *ω*-continuous, then for each $m \in M_b$,

 $b \in B$ and each fuzzy open set μ of $\phi(m) = n \in N_b$ in N, there exists a f. *ω*-open η of m in M_b , $b \in B$ such that $\phi(\eta) \leq \mu$. Thus, $p_N(\phi(\eta)) \leq p_N(\mu)$. And, $p_M = (p_N \circ \phi)_\eta \leq$ $p_N(\eta)$. Then, $p_M(p_N \circ \phi)_n \leq cl(\lambda)$. Thus, p_M f. almost weakly ω -continuous. Hence, (M, τ) is FWF almost weakly ω -top. sp...

Theorem 2.15. Let (M, τ) be a fuzzy ω -regular space. The FWF topological space (M, τ) over (B, σ) is FWF weakly θ - ω -top. sp., then it is FWF ω -top. sp..

Proof. Assume that (M, τ) is a FWF weakly θ - ω -top. sp. over (B, σ) , then the proj. $p:(M,\tau) \to (B,\sigma)$ f. weakly θ -*ω*-continuous. It suffices to demonstrate that p is f. *ω*continuous. Let $m \in M_h$; $b \in B$ and, μ be a fuzzy open set containing $p(m) \in B$. Where M is a f. ω -regular space there is a fuzzy open set $\mu_1 \in M_h$ so that $p(m) \in \mu_1$. And, $cl(\mu_1) \leq$ μ where p is f. weakly θ - ω -continuous, there is an f. ω -open set λ containing m such that $p(\lambda) \leq c l(\mu_1)$. It follows that, $p(\lambda) \leq \mu$. Therefore, p is f. ω -continuous. Thus, (M, τ) is FWF ω -top. sp..

Corollary 2.16. Assume that (M, τ) is a fuzzy ω -regular space. The FWF topological space (M, τ) over (B, σ) is FWF weakly θ - ω -top. sp. if and only if it is FWF ω -top. sp..

Theorem 2.17. The FWF topological space (M, τ) over (B, σ) is fuzzy ω -regular space. If (M, τ) is FWF θ - ω -top. sp., then it is FWF almost ω -top. sp..

Proof. Assume that (M, τ) is a FWF θ - ω -top. sp. over (B, σ) , then the proj. $p: (M, \tau) \rightarrow$ (B, σ) f. θ -*ω*-continuous. It suffices to demonstrate that p is f. almost ω -continuous. Let $m \in M_h$; $b \in B$ and, μ be a fuzzy open set containing $p(m)$ in B. Because p is θ - ω continuous, there exists is a f. ω -open set η containing m such that $p(cl^{\omega}(\eta)) \leq cl(\mu)$. Because $int(cl(\mu) \leq cl(\mu)$, then $p(cl^{\omega}(\eta)) \leq int(cl(\mu)) \leq cl(\mu)$, then $p(cl^{\omega}(\eta)) \leq$ $cl(\mu)$. Also (M, τ) is f. ω -regular space, there exists is a f. ω -open set η_1 in M_b such that $m < \eta_1$. Also, $cl(\eta_1) \leq \eta$. Thus, $p(cl^{\omega}(\eta_1)) \leq p(\eta)$ and $int(cl(\mu) \leq cl(\mu)$. It follows, $p(\eta) \leq int(cl(\mu))$. So, p is f. almost ω -continuous. Thus (M, τ) is FWF almost ω -top. sp..

Corollary 2.18. The FWF topological space (M, τ) over (B, σ) is fuzzy ω -regular space. Then (M, τ) is FWF θ - ω -top. sp. if and if it is FWF almost ω -top. sp..

Theorem 2.19. Assume that (B, σ) is a fuzzy ω -regular space. For a FWF topological space (M, τ) over (B, σ) is FWF almost weakly ω -top. sp., then it is FWF ω -top. sp..

Proof. Assume that (M, τ) is a FWF almost weakly ω -top. sp. over (B, σ) , then the proj. $p:(M,\tau) \to (B,\sigma)$ f. almost weakly ω -continuous. It suffices to demonstrate that p is f. ω continuous. Let $m \in M_b$; $b \in B$ and, μ be a fuzzy open set containing $p(m) \in B$. Where B is a f. *ω*-regular space there is a fuzzy open set μ_1 in B so that $p(m) \in \mu_1$. So well, $cl(\mu_1) \leq \mu$ since p is f. almost weakly ω -continuous, there exists is a f. ω -open set λ containing m such that $p(\lambda) \leq cl(\mu_1)$. It follows that, $p(\lambda) \leq \mu$. Therefore, p is f. ω continuous. Then (M, τ) is FWF ω -top. sp..

Corollary 2.20. Assume that (B, σ) is an fuzzy ω -regular space. For a FWF topological space (M, τ) over (B, σ) is FWF almost weakly ω -top. sp. if and only if it is FWF ω -top. sp..

Theorem 2.21. Assume that (M, τ) is an fuzzy ω -regular space. For a FWF topological space (M, τ) over (B, σ) is FWF weakly θ - ω -top. sp., then it is FWF θ - ω -top. sp..

Proof. Assume that (M, τ) is a FWF weakly θ - ω -top. sp. over (B, σ) , then the proj. $p:(M,\tau) \to (B,\sigma)$ f. weakly θ -*ω*-continuous. It suffices to demonstrate that p is f. θ -*ω*continuous. Assume that $m \in M_b$; $b \in B$ and, μ is an fuzzy open set containing $p(m) \in B$. Where *M* is an f. *ω*-regular space there is a fuzzy open set $\mu_1 \in M_b$ so that $p(m) \in \mu_1$. And, $cl(\mu_1) \leq \mu$ where p is f. weakly θ -ω-continuous, there is f. ω -open set λ containing m such that $p(\lambda) \leq cl(\mu)$. It follows that, $p(cl^{\omega}(\lambda)) \leq cl(\mu)$. Therefore, p is f. θ - ω -continuous. Thus, (M, τ) is FWF θ - ω -top. sp. .

Corollary 2.22. Assume that (M, τ) is an fuzzy ω -regular space. For a FWF topological space (M, τ) over (B, σ) is FWF weakly θ - ω -top. sp. if and only if it is FWF θ - ω -top. sp..

Theorem 2.23. Assume that (B, σ) is a fuzzy ω -regular space. For a FWF topological space (M, τ) over (B, σ) is FWF almost ω -top. sp., then it is FWF ω -top. sp..

Proof. Assume that (M, τ) is a FWF almost ω -top. sp. over (B, σ) , then the proj. $p: (M, \tau) \rightarrow$ $f(B, \sigma)$ f. almost ω -continuous. It suffices to demonstrate that p is f. ω -continuous. Assume that $m \in M_b$; $b \in B$ and, μ is an fuzzy open set containing $p(m) \in B$. Since p is f. almost ω continuous, there exists is an f. ω -open set λ contains m such that $p(\lambda) \leq int(c l(\mu))$. Because $int(cl(\mu)) \leq cl(\mu)$. Then $(\lambda) \leq int(cl(\mu)) \leq cl(\mu)$. Thus, $p(\lambda) \leq cl(\mu)$, and B is a f. ω -regular space there exists is a f. ω -open set λ_1 in M_h such that $m \in \lambda_1$. And, $cl(\mu_1) \leq$ μ . Therefore, $p(\lambda) \leq cl(\mu_1) \leq \mu$. It follows that, $p(\lambda) \leq \mu$. Thus, p is f. ω -continuous. Then (M, τ) is FWF ω -top. sp. .

corollary 2.24. Assume that (B, σ) is an fuzzy ω -regular space. For a FWF topological space (M, τ) over (B, σ) is FWF almost ω -top. sp. if and only if it is FWF ω -top. sp..

Theorem 2.25. Assume that (B, σ) is an fuzzy ω -regular space. For a FWF topological space (M, τ) over (B, σ) is FWF weakly θ - ω -top. sp., then it is FWF almost ω -top. sp..

Proof. Assume that (M, τ) is a FWF weakly θ - ω -top. sp. over (B, σ) , then the proj. $p:(M,\tau) \to (B,\sigma)$ f. weakly θ -*ω*-continuous. It suffices to demonstrate that p is f. almost ω continuous. Let $m \in M_b$; $b \in B$ and, μ be a fuzzy open set containing $p(m) \in B$. Where B is f. ω -regular space, there is a fuzzy open set $\mu_1 \in B$ so that $\lambda(m) \in \mu_1$ and $cl(\mu_1) \leq \mu$. Because p is weakly θ - ω -continuous, there is a f. ω -open set λ contains m so that $p(\lambda) \leq$ $cl(\mu_1)$. Where, $int(cl(\mu) \leq cl(\mu)$, then $p(\lambda) \leq int(cl(\mu)) \leq cl(\mu)$, Therefore $p(\lambda) \leq$ int(cl(μ)). So, p is f. almost ω -continuous on M. Then (M, τ) is FWF almost ω -top. sp. .

Corollary 2.26. Assume that (B, σ) is an fuzzy ω -regular space. For a FWF topological space (M, τ) over (B, σ) is FWF weakly θ - ω -top. sp. if and only if it is FWF almost ω -top. sp..

Theorem 2.27 The FWF topological space (M, τ) over (B, σ) is FWF θ - ω -top. sp. Iff the graph fuzzy mapping $g: (M, \tau) \to (M, \tau) \times (B, \sigma)$, knowledge before $g(m) = (m, p(m))$, for every $m \in M$ is a f. θ - ω -continuous

Proof. Necessity. Let g be an f. θ - ω -continuous. It suffices to demonstrate that (M, τ) is a FWF θ - ω -top. sp. over (B, σ) , i.e. the proj. $p: (M, \tau) \rightarrow (B, \sigma)$ is f. θ - ω -continuous. Let $m \in M_h$, $b \in B$ and λ be a fuzzy open set containment p (m) . Thus, $M \times \lambda$ is an fuzzy open set of $M \times B$ containing $g(m)$. Because g is θ -ω-continuous, there is f. ω -open set η contains m so that $g(cl^{\omega}(\eta)) \leq cl(M \times \lambda) = M \times cl(\lambda)$. Therefore, $p(cl^{\omega}(\eta)) \subseteq cl(\lambda)$. Then, p is f. θ - ω -continuous. Then, (M, τ) is FWF θ - ω -top. sp. .

Sufficiency. Assume that (M, τ) is a FWF θ - ω -top. sp. over (B, σ) , then the proj. $p: (M, \tau) \rightarrow$ (B, σ) f. θ -*ω*-continuous. It suffices to demonstrate that g is f. θ -*ω*-continuous. Let $m \in M_h$; $b \in B$ and μ be a fuzzy open set of $M \times B$ containing $g(m)$, there exists a fuzzy open sets $\eta_1 \leq M$. And, $\lambda \leq B$ such that $g(m) = (m, p(m)) < \eta_1 \times \lambda \leq \mu$. Because p is f. θ -ωcontinuous, there is f. ω -open η_2 so that $p(cl^{\omega}(\eta_2)) \leq cl(\mu)$. Assume $\eta = \eta_1 \wedge \eta_2$. Then, η is f. ω -open in M. Therefore, $g(cl^{\omega}(\eta)) \leq cl(\eta_1) \times p(cl^{\omega}(\eta_2)) \leq cl(\eta_1) \times cl(\lambda) \leq cl(\mu)$. Then , g is θ - ω -continuous.

Theorem 2.28. Assume that (M, τ) is a FWF topological space over (B, σ) so well (B, σ) is a fuzzy ω -regular space. The following properties are equivalent:

- (a) FWF weakly θ - ω -top. sp..
- (b) FWF ω -top. sp..
- (c) FWF almost ω -top. sp..
- (d) FWF θ - ω -top. sp..
- (e) FWF almost ω -top. sp..

Proof: The proof follows directory from by Theorems 2.15, 2.6, 2.17, and 2.25.

Remark 2.29. The relation between FWF weakly *ω-*top. sp.is given by the following figure:

FWF weakly θ - ω -top. sp. FWF θ - ω -top. sp.

Figure 2

3. Strongly fibrewise fuzzy θ-ω-topological spaces

In this part, we study the strongly fibrewise θ - ω -continuous topological spaces and some theorems concerning them.

Definition 3.1. A function $\phi: (M, \tau) \rightarrow (N, \Lambda)$ is called fuzzy almost strongly ω -continuous (shortly., f. almost strongly ω -continuous) when if every $m \in M$ so well all fuzzy open set μ in B contains $\phi(m)$, there is a fuzzy ω -open subset λ so that $\phi(cl(\lambda)) \leq int(cl(\mu))$.

Definition 3.2. A function $\phi: (M, \tau) \rightarrow (N, \Lambda)$ is named fuzzy strongly θ -*ω*-continuous (briefly f. strongly θ - ω -continuous) when if every $m \in M$ so well all fuzzy open set μ in B contains $\phi(m)$, there is a fuzzy ω -open subset λ such that $\phi(cl^{\omega}(\lambda)) \leq \mu$.

Definition 3.3. The FWF topological space (M, τ) over (B, σ) is named a FWF strongly θ - ω top. sp. (resp., FWF almost strongly ω-top. sp.) if the proj. function p is f. strongly $θ$ -ωcontinuous mapping (resp., f. almost strongly *ω-*continuous) mapping.

The converses does not hold as we show by next examples:

Example 3.4. Assume $M = \{a, b, c\}$, $B = \{x, y, z\}$, $\tau = \{\overline{0}, \overline{1}, \mu_1, \mu_2\}$ where

 $\mu_1 = \{(a, 0.3), (b, 0), (c, 0.5)\}\$

 $\mu_2 = \{(a, 0.7), (b, 0.7), (c, 0.5)\}\$

So well assume that $\sigma = {\overline{0}, \overline{1}, \lambda}$, where $\lambda = \{(x, 0.6), (y, 0.7), (z, 0.5)\}$ is the fuzzy topologies on set *M* and *B* respectively and let the projection function $p:(M, \tau) \rightarrow (B, \sigma)$ be the fuzzy function as $(a) = p(b) = y$, $p(c) = z$. Let $\eta = \{(a, 0.5), (b, 0.5), (c, 0.5)\}\)$ fuzzy ω -open of M so well $v = \{(a, 0.6), (b, 0.7), (c, 0.5)\}$ is fuzzy open of B. Thus, $p(\eta) \leq (v)$ but $p(cl^{\omega}(\eta)) \nleq (v)$. Then, (M, τ) is FWF ω -top. sp. but not FWF strongly θ - ω -top. sp..

Theorem 3.5. Assume that (B, σ) is a fuzzy regular space. For a FWF topological space (M, τ) over (B, σ) is FWF ω -top. sp., then it is FWF strongly θ - ω -top. sp..

Proof. Assume that (M, τ) is a FWF ω -top. sp. over (B, σ) , then the proj. $p: (M, \tau) \rightarrow (B, \sigma)$ f. ω -continuous. It suffices to demonstrate that p is f. strongly θ - ω -continuous. Assume that $m \in M_h$; $b \in B$ and, λ is a fuzzy open set containing $p(m) \in B$. Since B is a fuzzy regular space there is a fuzzy open set μ , such that $p(m) \in \mu \leq cl(\mu) \leq \lambda$ since p is f. ω continuous. Thus, M_u is a f. *ω*-open set so well, $M_{cl(u)}$ is a f. *ω*-closed. Assume $\xi = M_u$. Then, $m \in M_u \leq M_{cl(u)}, \xi$ is a f. *ω*-open. Also $cl^{\omega}(\xi) \leq M_{cl(u)},$ we have $cl(\mu) \leq \lambda$. Therefore, p is f. strongly θ - ω -continuous. Then, (M, τ) is FWF strongly θ - ω top. sp. .

Corollary 3.6. Assume that (B, σ) is a fuzzy regular space. For a FWF topological space (M, τ) over (B, σ) is FWF ω -top. sp. if and only if it is FWF strongly θ - ω -top. sp. .

Example 3.7. Let $M = \{a, b, c\}$, $B = \{x, y, z\}$, $\tau = \{\overline{0}, \overline{1}, \mu_1, \mu_2\}$ where $\mu_1 = \{(a, 0.1), (b, 0.2), (c, 0.5)\}\$ $\mu_2 = \{(a, 0.4), (b, 0.3), (c, 0.5)\}\$ And let $\sigma = {\overline{0}, \overline{1}, \lambda}$, where $\lambda = \{(x, 0.3), (y, 0.4), (z, 0.5)\}$ be the fuzzy topologies on set

M and *B* respectively and let the projection function $p: (M, \tau) \rightarrow (B, \sigma)$ be the fuzzy function as $p(a) = y$, $p(b) = x$, $p(c) = z$. Let $\eta = \{(a, 0.2), (b, 0.1), (c, 0.3)\}\)$ fuzzy ω -open of M so well $v = \{(x, 0, 3), (y, 0.4), (z, 0.5)\}\$ is fuzzy open of B. Thus, $p(\eta) \leq (v)$ but $p(cl(\eta)) \nleq$ $int(cl(v))$. Then, (M, τ) is FWF ω -top. sp. but not FWF almost strongly ω -top. sp..

Theorem 3.8. Assume that (M, τ) is an fuzzy ω -regular space. For a FWF topological space (M, τ) over (B, σ) is FWF ω -top. sp., then it is FWF almost strongly ω -top. sp..

Proof. Assume that (M, τ) is a FWF ω -top. sp. over (B, σ) , then the proj. $p: (M, \tau) \rightarrow (B, \sigma)$ f. ω -continuous. It suffices to demonstrate that p is f. almost strongly ω -continuous. Assume that $m \in M_h$; $b \in B$ and, λ is a fuzzy open set contains $p(m)$ in B. Since p is f. ω continuous, there is a f. *ω*-open set μ contains m in M so that $p(\mu) \leq \lambda$. And, $\lambda \leq cl(\lambda)$. Thus, $p(\mu) \leq cl(\lambda)$. Since M is f. *ω*-regular, there is a f. *ω*-open set $\mu_1 \in M$ so that $m \in \mu_1$ and, $cl(\mu_1) \leq \mu$. Thus, $p(cl(\mu_1)) \leq p(\mu)$. And, $p(\mu) \leq cl(\lambda)$ then, $int(cl((\lambda)) \leq cl(\lambda)$. It follows that, $(cl(\mu_1)) \leq int(cl(\lambda))$. Therefore, p is f. almost strongly ω -continuous. Thus, (M, τ) is FWF almost strongly ω -top. sp...

Corollary 3.9. Assume that (M, τ) is a fuzzy ω -regular space. For a FWF topological space (M, τ) over (B, σ) is FWF ω -top. sp. if and only if it is FWF almost strongly ω -top. sp..

Example 3.10. Let $M = \{a, b, c\}$, $B = \{x, y, z\}$, $\tau = \{\overline{0}, \overline{1}, \mu_1, \mu_2\}$ where $\mu_1 = \{(a, 0.3), (b, 0.4), (c, 0.5)\}\$ $\mu_2 = \{(a, 0.2), (b, 0.2), (c, 0.5)\}\$ And let $\sigma = {\overline{0}, \overline{1}, \lambda}$, where $\lambda = \{(x, 0.2), (y, 0.2), (z, 0.5)\}$ be the fuzzy topologies on set *M* and *B* respectively and let the projection function $p: (M, \tau) \rightarrow (B, \sigma)$ be the fuzzy function as $p(a) = y$, $p(b) = x$, $p(c) = z$. Then, (M, τ) is FWF θ - ω -top. sp. but not FWF strongly θ - ω -top. sp..

Theorem 3.11. Assume that (B, σ) is a fuzzy regular space. For a FWF topological space (M, τ) over (B, σ) is FWF θ - ω -top. sp., then it is FWF strongly θ - ω -top. sp..

Proof. Assume that (M, τ) is a FWF θ - ω -top. sp. over (B, σ) , then the proj. $p: (M, \tau) \rightarrow$ (B, σ) f. θ -*ω*-continuous. It suffices to demonstrate that p is f. strongly θ -*ω*-continuous. Let $m \in M_h$; $b \in B$ and, λ be a fuzzy open set contains $p(m)$ in B. Because p is f. θ - ω continuous, there is a f. *ω*-open set μ contains m in M so that $p(cl^{\omega}(\mu)) \leq cl(\lambda)$ since B is f. regular, there exists is a fuzzy open set \aleph such that $(m) \in \aleph \leq cl(\aleph) \leq \lambda$. Then,

 $(cl^{\omega}(\mu)) \leq cl(\aleph) \leq \lambda$. Therefore, $p(cl(\mu)) \leq \lambda$. Thus, p is f. strongly θ - ω -continuous. Then (M, τ) is FWF strongly θ - ω -top. sp...

Corollary 3.12. Let (B, σ) be a fuzzy regular space. The FWF topological space (M, τ) over (B, σ) is FWF θ - ω -top. sp. if and only if it is FWF strongly θ - ω -top. sp..

Example 3.13. Let $M = \{a, b, c\}$, $B = \{x, y, z\}$, $\tau = \{\overline{0}, \overline{1}, \mu_1, \mu_2\}$ where $\mu_1 = \{(a, 0.3), (b, 0.4), (c, 0.5)\}\$ $\mu_2 = \{(a, 0.3), (b, 0.3), (c, 0.5)\}\$ And let $\sigma = {\overline{0}, \overline{1}, \lambda}$, where $\lambda = \{(x, 0.3), (y, 0.3), (z, 0.5)\}$ be the fuzzy topologies on set

M and *B* respectively and let the projection function $p: (M, \tau) \rightarrow (B, \sigma)$ be the fuzzy function as $p(a) = y$, $p(b) = x$, $p(c) = z$. Then, (M, τ) is FWF θ - ω -top. sp. but not FWF almost strongly ω -top. sp..

Theorem 3.14. Assume that (B, σ) is a fuzzy ω -regular space. For a FWF topological space (M, τ) over (B, σ) is FWF θ - ω -top. sp., then it is FWF almost strongly ω -top. sp..

Proof. Assume that (M, τ) is a FWF θ - ω -top. sp. over (B, σ) , then the projection $p: (M, \tau) \rightarrow$ (B, σ) f. θ - ω -continuous. It suffices to demonstrate that p is f. strongly θ - ω -continuous. Assume that $m \in M_h$; $b \in B$ and, λ is a fuzzy open set contains $p(m) \in B$. Since p is f. θ *ω*-continuous, there exists is an f. *ω*-open set μ contains $m \in M$ such that $p(cl^{\omega}(\mu)) \le$ $cl(\lambda)$. Since B is f. ω -regular, there exists is a fuzzy open set λ_1 in B such that $p(m) \in \lambda_1$ so well $cl(\lambda_1) \leq \lambda$. Thus, $(cl(\lambda_1)) \leq cl(\lambda_1)$. It follows that, $p(cl(\mu)) \leq int(cl(\lambda_1))$. Then, is f. almost strongly ω -continuous. Then (M, τ) is FWF strongly θ - ω -top. sp..

Example 3.15. Let $M = \{a, b\}$, $B = \{x, y, z\}$, $\tau = \{\overline{0}, \overline{1}, \mu_1, \mu_2, \mu_3\}$ where $\mu_1 = \{(a, 0.6), (b, 0.7)\}\$ $\mu_2 = \{(a, 1), (b, 0.9)\}\$ $\mu_2 = \{(a, 0.2), (b, 0.3)\}\$ And let $\sigma = {\overline{0}, \overline{1}, \lambda}$, where $\lambda = \{(x, 0.2), (y, 0.3)\}$ be the fuzzy topologies on set *M* and *B*

respectively and let the projection function $p: (M, \tau) \rightarrow (B, \sigma)$ be the fuzzy function as $p(a) = x$, $p(b) = y$, let $\eta = \{(a, 0.5), (b, 0.5)\}\)$ fuzzy ω -open in M. Then, (M, τ) is FWF almost ω -top. sp. but not FWF almost strongly ω -top. sp..

Theorem 3.16. Assume that (M, τ) is an fuzzy ω -regular space. For a FWF topological space (M, τ) over (B, σ) is FWF almost ω -top. sp., then it is FWF almost strongly ω -top. sp..

Proof. Assume that (M, τ) is a FWF almost ω -top. sp. over (B, σ) , then the proj. $p: (M, \tau) \rightarrow$ (B, σ) f. almost ω -continuous. It suffices to demonstrate that p is f. almost strongly ω continuous. Assume that $m \in M_h$; $b \in B$ so well, λ is a fuzzy open set containing $p(m) \in B$. Since p is f. almost ω -continuous. There is a f. ω -open set μ containing m of M so that $p(\mu) \leq int(cl(\lambda))$. Since M is fuzzy ω -regular. There is a f. ω -open set $\mu_1 \in M$ so that $m \in \mu_1$ so well, $cl(\mu_1) \leq \mu$. Thus, $(cl(\mu_1)) \leq p(\mu)$. where, $p(cl(\mu_1)) \leq p(\mu) \leq$

 $int(cl(\lambda))$. It follows that, $(cl(\mu_1)) \leq int(cl(\lambda))$. Therefore, p is f. almost strongly ω continuous. Then (M, τ) is FWF almost strongly ω -top. sp..

Corollary 3.17. Assume that (M, τ) is an fuzzy ω -regular space. For a FWF topological space (M, τ) over (B, σ) is FWF almost ω -top. sp. if and only if it is FWF almost strongly ω top. sp..

Lemma 3.18. Assume that $\phi : (M, \tau) \to (N, \Lambda)$ is a f. strongly θ - ω -continuous fibrewise surjection function, since (M, τ) so well (N, Λ) are FWF topological spaces over (B, σ) . Just as (N, Λ) is a FWF top. sp., so (M, τ) is FWF strongly θ - ω -top. sp..

Theorem 3.19 The FWF topological space (M, τ) over (B, σ) is FWF strongly θ - ω -top. sp. and (M, τ) is a fuzzy ω -regular iff the graph fuzzy mapping $g: (M, \tau) \to (M, \tau) \times (B, \sigma)$, knowledge before $g(m) = (m, p(m))$, for all $m \in M$ is a f. strongly θ - ω -continuous.

Proof. By Lemma 3.17. Then, (M, τ) is FWF strongly θ - ω -top. sp. if the graph mapping g is f. strongly θ - ω -continuous. It follows that, M is fuzzy regular. To prove conversely. Assume that (M, τ) is a FWF strongly θ - ω -top. sp. over (B, σ) , then the proj. $p: (M, \tau) \rightarrow (B, \sigma)$ f. strongly θ -*ω*-continuous. Let $m \in M_h$; $b \in B$ and, λ be a fuzzy open set containing $g(m)$ in $M \times B$, there exists fuzzy open sets μ_1 in M also v in B such that $g(m) = (m, p(g)) \in$ $\mu_1 \times \nu \leq \lambda$. Because p is f. strongly θ -ω-continuous, there is μ_2 is f. ω -open so that $p(cl^{\omega}(\mu_2)) \leq \lambda$. Because *M* is a f. *ω*-regular and, $\mu_1 \wedge \mu_2$ is f. *ω*-open, there is μ f. *ω*-open such that $m \in \mu \leq cl^{\omega}(\mu) \leq \mu_1 \wedge \mu_2$ by Lemma 2.12. Therefore, $g(cl^{\omega}(\mu)) \leq \mu_1 \times$ $p(c l^{\omega}(\mu_2)) \leq \mu_1 \times \nu \leq \lambda$. Then, g is f. strongly θ - ω -continuous.

Example 3.20. In Example 3.14. Then, (M, τ) is FWF almost ω -top. sp. but not FWF strongly θ - ω -top. sp..

Theorem 3.21. Assume that (M, τ) is a fuzzy ω -regular space. For a FWF topological space (M, τ) over (B, σ) is FWF almost ω -top. sp., then it is FWF strongly θ - ω -top. sp..

Proof. Assume that (M, τ) is a FWF almost ω -top. sp. over (B, σ) , then the proj. $p: (M, \tau) \rightarrow$ $f(B, \sigma)$ f. almost ω -continuous. It suffices to demonstrate that p is f. strongly θ - ω -continuous. Let $m \in M_b$; $b \in B$ and, λ be a fuzzy open set containing $p(m) \in B$. where p is f. almost ω continuous. There is a f. *ω*-open set μ containing $m \in M$ so that $p(\mu) \leq int(cl(\lambda))$. Where M is fuzzy ω -regular. There is a f. ω -open set $\mu_1 \in M$ such that $m \in \mu_1$ so well, $cl(\mu_1) \leq \mu$. Thus, $(cl(\mu_1)) \leq p(\mu)$. Then, $int(cl(\lambda)) \leq cl(\lambda)$). It follows that, $p(cl(\mu_1)) \leq \lambda$. Therefore, p is f. strongly θ - ω -continuous. Then (M, τ) is FWF strongly θ - ω -top. sp..

Corollary 3.22. Assume that (M, τ) is an fuzzy ω -regular space. For a FWF topological space (M, τ) over (B, σ) is FWF almost ω -top. sp., if and only if it is FWF strongly θ - ω -top. sp..

Theorem 3.23. Assume that (M, τ) is an FWF topological space over (B, σ) so well (B, σ) is a fuzzy ω -regular space. The following properties are equivalent:

- (a) FWF almost strongly θ - ω -top. sp..
- (b) FWF ω -top. sp..
- (c) FWF almost ω -top. sp..
- (d) FWF θ - ω -top. sp..

Proof. The proof follows directory from by Theorems 3.4, 3.6, 3.10, 3.12 and 3.13.

Remark 3.24. The relation between FWF strongly *ω-*top. sp. is given by the following figure:

Figure 3

4. Relationship between Weak and Strong Forms of Fibrewise Fuzzy ω-Topological Spaces

In this section, we study the relation between FWF weakly θ - ω -top. sp. and FWF strongly θ - ω -top. sp. and the some theorems concerning them.

Definition 4.1. A mapping $\phi : (M, \tau) \rightarrow (N, \Lambda)$ are said to be fuzzy almost weakly (resp., fuzzy almost strongly) continuous (briefly, f. almost weakly and f. almost strongly) continuous if for each $m \in M$ and each fuzzy open neighborhood (resp., fuzzy open set) λ of N containing $\phi(m)$, there exists a f. *ω*-open neighborhood (resp., f. *ω*-open set) μ of M so that ϕ (int $(cl(\mu)) \leq \lambda$ (resp., $\phi(\mu) \leq cl(\lambda)$, $\phi(cl(\mu)) \leq \lambda$.

Definition 4.2. A mapping $\phi : (M, \tau) \rightarrow (N, \Lambda)$ is said to be f. super (resp., f. weakly, f. strongly) ω -continuous if for each $m \in M$ and each fuzzy open (resp., fuzzy regular open) set λ of N containing $\phi(m)$, there is a fuzzy open set μ of M so that $\phi(\mu) \leq cl(\lambda)$ (resp., $\phi(cl(\mu)) \leq \lambda)$.

Definition 4.3. A mapping $\phi: (M, \tau) \rightarrow (N, \Lambda)$ is called fuzzy weakly θ -continuous (briefly, f. weakly θ -continuous) if for each $m \in M$ and each fuzzy open λ of B containing $p(m)$, there exists a fuzzy open set μ of M such that $p(\mu) \leq cl(\lambda)$.

Definition 4.4. The FWF topological space (M, τ) over (B, σ) is named a FWF super ω -top. sp. (resp., FWF weakly ω -top. sp., FWF strongly ω -top. sp., FWF almost strongly ω -top. sp., FWF almost weakly ω -top. sp., FWF weakly θ -top. sp.) if the projection function p is fuzzy super ω -continuous mapping (resp., f. weakly ω -continuous, f. strongly ω -continuous, f. almost strongly ω -continuous, f. almost weakly ω -continuous, f. weakly θ -continuous) mapping.

The relation between FWF weakly and FWF strongly *ω-*top. sp. given by the following figure

Figure 4

The following examples show that these implications are not reversible:

Example 4.5. Assume $M = \{a, b, c\}$, $B = \{x, y, z\}$, $\tau = \{\overline{0}, \overline{1}, \mu_1, \mu_2, \mu_3\}$ where

 $\mu_1 = \{(a, 0.3), (b, 0.4), (c, 0.5)\}\$

 $\mu_2 = \{(a, 0.2), (b, 0.2), (c, 0.5)\}\$

 $\mu_3 = \{(a, 0.5), (b, 0.6), (c, 0.5)\}\$

So well assume that $\sigma = {\overline{0}, \overline{1}, \lambda}$, where $\lambda = \{(x, 0.5), (y, 0.6), (z, 0.5)\}$ is the fuzzy topologies on set *M* and *B* respectively and let the projection function $p: (M, \tau) \rightarrow (B, \sigma)$ be the fuzzy function as $p(a) = x$, $p(b) = y$, $p(c) = z$. let $\eta = \{(a, 0.5), (b, 0.5), (c, 0.5)\}$ fuzzy ω -open in M. Then, (M, τ) is FWF super ω -top. sp. but not FWF strongly θ - ω -top. sp..

Theorem 4.6. Assume that (M, τ) is a fuzzy regular space. For a FWF topological space (M, τ) over (B, σ) is FWF super ω -top. sp., then it is FWF strongly θ - ω -top. sp..

Proof. Assume that (M, τ) is a FWF super ω -top. sp. over (B, σ) , then the proj. $p: (M, \tau) \rightarrow$ $f(B, \sigma)$ f. super *ω*-continuous. It suffices to demonstrate that p is f. strongly θ -*ω*-continuous. Assume that $m \in M_h$; $b \in B$ so well, λ is a fuzzy open set containing $p(m) \in B$. Because of p is a f. super ω -continuous, there exists is a fuzzy regular open set μ containing m, such that $p(\mu) \leq \lambda$. Because $int(cl(\lambda)) \leq cl(\lambda)$, then $p(\mu) \leq int(cl(\lambda)) \leq cl(\lambda)$. Then, $p(\mu) \leq$ $cl(\lambda)$. And, M is a fuzzy regular space, there is an fuzzy open set v so that $m \in \nu \leq cl(\nu) \leq$ μ . since, $p(cl(v)) \leq \lambda$. Therefore, p is f. strongly θ -ω-continuous. Then (M, τ) is FWF strongly θ - ω -top. sp..

Corollary 4.7. Assume that (M, τ) is an fuzzy regular space. For a FWF topological space (M, τ) over (B, σ) is FWF super ω -top. sp. if and only if it is FWF strongly θ - ω -top. sp..

Example 4.8. Let $M = \{a, b\}$, $B = \{x, y, z\}$, $\tau = \{\overline{0}, \overline{1}, \mu_1, \mu_2\}$ where $\mu_1 = \{(a, 0.7), (b, 0.6)\}\$ $\mu_2 = \{(a, 0.7), (b, 0.9)\}\$ And let $\sigma = {\overline{0}, \overline{1}, \lambda}$, where $\lambda = {\alpha, 0.7}$, $(y, 0.6)$ be the fuzzy topologies on set *M* and *B* respectively and let the projection function $p: (M, \tau) \to (B, \sigma)$ be the fuzzy function as $p(a) = x$, $p(b) = y$, let $\eta = \{(a, 0.5), (b, 0.5)\}$ fuzzy ω -open in M. Then

, (M, τ) is FWF ω -top. sp. but not FWF super ω -top. sp..

Theorem 4.9. Assume that (M, τ) is an fuzzy regular space. For a FWF topological space (M, τ) over (B, σ) is FWF ω -top. sp., then it is FWF super ω -top. sp..

Proof. Assume that (M, τ) is a FWF ω -top. sp. over (B, σ) , then the proj. $p: (M, \tau) \rightarrow (B, \sigma)$ f. ω -continuous. It suffices to demonstrate that p is f. super ω -continuous. Let $m \in M_b$; $b \in B$ and, λ be a fuzzy open set containing $p(m)$ in B. Because of p is a f. ω -continuous, there is a fuzzy ω -open set μ contains m, so that $p(\mu) \leq \lambda$, also int($cl(\mu) \leq cl(\mu)$. Then, $p(int(\text{cl}(\mu)) \leq p(\text{cl}(\mu))$. And, M is a fuzzy regular space. There is an fuzzy open set μ_1

such that $\in \mu_1 \leq cl(\mu_1) \leq \mu$. Thus, $p(int(cl(\mu)) \leq p(cl(\mu_1))$ so well, $p(\mu) \leq \lambda$. Then, $p(int(cl(\mu)) \leq \lambda$. It follow that, p is f. super ω -continuous. Then (M, τ) is FWF super ω top. sp..

Corollary 4.10. Assume that (M, τ) is an fuzzy regular space. For a FWF topological space (M, τ) over (B, σ) is FWF ω -top. sp. if and only if it is FWF super ω -top. sp..

Example 4.11. For an fuzzy topological space $(M, \tau) = (B, \sigma)$ Let $\sigma = \tau = \{\overline{0}, \overline{1}, \mu : \frac{1}{2}\}$ 3 $\mu(m) \leq \frac{2}{3}$ $\frac{2}{3}$, for some fixed element m of M and $\mu(m) = 0$, otherwise}. Assume that (M, τ) is a FWF topological space over (B, σ) also assume that the projection function $p: (M, \tau) \rightarrow$ (B, σ) is the fuzzy function as the identity maps. Then, (M, τ) is FWF top. sp. but not FWF strongly top. sp. .

Theorem 4.12. Assume that (M, τ) is an fuzzy regular space. For a FWF topological space (M, τ) over (B, σ) is FWF top. sp., then it is FWF strongly top. sp..

Proof. Assume that (M, τ) is a FWF top. sp. over (B, σ) , then the proj. $p: (M, \tau) \rightarrow (B, \sigma)$ f. continuous. It suffices to demonstrate that p is f. strongly continuous. Let $m \in M_b$; $b \in B$ and, λ be a fuzzy open set containing $p(m)$ in B. Because of p is a f. continuous, there is a fuzzy open set μ contains m , so that $p(\mu) \leq \lambda$, where M is fuzzy regular space, there is a fuzzy open set $\mu_1 \in M$ such that $m \in \mu_1$ also, $cl(\mu_1) \leq \mu$. Thus, $p(cl(\mu_1)) \leq p(\mu)$. Then, $p(cl(\mu_1)) \leq \lambda$. Therefore, p is f. strongly continuous. Then (M, τ) is FWF strongly compact.

Corollary 4.13. Assume that (M, τ) is an fuzzy regular space. For a FWF topological space (M, τ) over (B, σ) is FWF ω -top. sp., if and only if it is FWF strongly compact.

Theorem 4.14. Let (B, σ) be a fuzzy regular space. The FWF topological space (M, τ) over (B, σ) is FWF weakly top. sp., then it is FWF top. sp..

Proof. Assume that (M, τ) is a FWF weakly top. sp. over (B, σ) , then the proj. $p: (M, \tau) \rightarrow$ (B, σ) f. weakly continuous. It suffices to demonstrate that p is f. continuous. Let $m \in M_h$; $b \in B$ and, λ be a fuzzy open set containing $p(m) \in B$. Where B is fuzzy regular, there is a fuzzy open set $\lambda_1 \in B$ so that $p(m) \in \lambda_1$ also, $cl(\lambda_1) \leq \lambda$. Because p is weakly continuous, there exists is a fuzzy open set μ containing m in M so that $p(\mu) \leq cl(\lambda_1)$. Thus, $p(\mu) \leq \lambda$. It follows that, p is f. continuous. Then, (M, τ) is FWF top. sp. .

Corollary 4.15. Assume that (B, σ) is an fuzzy regular space. For a FWF topological space (M, τ) over (B, σ) is FWF weakly top. sp. if and only if it is FWF top. sp. .

Example 4.16. Let = $\{a, b\}$, $B = \{x, y\}$, $\tau = \{\overline{0}, \overline{1}, \mu_1, \mu_2, \mu_3\}$ where $\mu_1 = \{(a, 0.60), (b, 0.60)\}\$ $\mu_2 = \{(a, 1), (b, 0.9)\}\$ $\mu_3 = \{(a, 0.11), (b, 0.31)\}\$

And let $\sigma = {\overline{0}, \overline{1}, \lambda}$, where $\lambda = {\alpha, 0.11}, (\gamma, 0.31)$ be the fuzzy topologies on set *M* and *B* respectively and let the projection function $p: (M, \tau) \rightarrow (B, \sigma)$ be the fuzzy function as $p(a) = x$, $p(b) = y$. Let $\eta = \{(a, 0.7), (b, 0.4)\}$ fuzzy ω -open in M also $v = \{(a, 0.11), (b, 0.31)\}\$ be an fuzzy open of B. Thus, $p(\eta) \leq int(cl(v))$ but $(int cl(\eta)) \nleq$ v. Then, (M, τ) is FWF almost ω -top. sp. but not FWF super ω -top. sp..

Definition 4.17. [5] A fuzzy topological space (M, τ) is called a fuzzy semi-regular space iff the collection of all fuzzy regular open sets of M forms a base for fuzzy topology τ .

Theorem 4.18 assume that (M, τ) and (B, σ) are an fuzzy regular space. For a FWF topological space (M, τ) over (B, σ) is FWF almost ω -top. sp., then it is FWF super ω -top. sp..

Proof. Assume that (M, τ) is a FWF almost ω -top. sp. over (B, σ) , then the projection $p:(M,\tau) \to (B,\sigma)$ f. almost *ω*-continuous. It suffices to demonstrate that p is f. super ω continuous. Let $m \in M_h$; $b \in B$ and, λ be a fuzzy open set containing p (m) in B. Because of p is f. almost ω -continuous, there exists is a f. ω -open set μ containing m. For each fuzzy regular open set λ of B contains $p(m)$ so that $p(\mu) \leq \lambda$. Thus, $(\mu) \leq (int(c\lambda))$. Because the space M is fuzzy semi-regular space, There exists is a fuzzy open set $\mu_1 \in M$ so that $m \in \mu_1$ also, $\lambda \leq int(cl(\lambda)) \leq \mu$. Thus, $(\lambda) \leq p(int(cl(\lambda))) \leq p(\mu)$. Also, $p(\mu) \leq$ $int(cl(\mu))$. Thus, $p(int(cl(\lambda))) \leq p(\mu) \leq int(cl(\lambda))$. So well, the space B is fuzzy semiregular space, there exists is a fuzzy open set λ_1 in B such that $p(m) \in \lambda_1$ then, $\mu \leq$ $int(cl(\mu)) \leq \lambda$. Thus, $p(\mu) \leq p(int(cl(\mu)))$. It follows that, $p(int(cl(\mu))) \leq \lambda$. Then, p is f. super ω -continuous. Hence (M, τ) is FWF super ω -top. sp..

corollary 4.19. Let (M, τ) and (B, σ) be a fuzzy regular space. The FWF topological space (M, τ) over (B, σ) is FWF almost ω -top. sp. if and only if it is FWF super ω -top. sp..

Example 4.20. Let $M = \{a, b, c\}$, $B = \{x, y, z\}$, $\tau = \{\overline{0}, \overline{1}, \mu_1, \mu_2\}$ where $\mu_1 = \{(a, 0.1), (b, 0.2), (c, 0.5)\}\$ $\mu_2 = \{(a, 0.4), (b, 0.3), (c, 0.5)\}\$

And let $\sigma = {\overline{0}, \overline{1}, \lambda}$, where $\lambda = \{(x, 0.3), (y, 0.4), (z, 0.5)\}$ be the fuzzy topologies on set *M* and *B* respectively and let the projection function $p: (M, \tau) \rightarrow (B, \sigma)$ be the fuzzy function as $p(a) = y$, $p(b) = x$, $p(c) = z$. Let $v = \{(x, 0, 3), (y, 0.4), (z, 0.5)\}\$ is fuzzy open in B. Then, $p(\mu_1) \leq cl(\nu)$ but $p(cl(\mu_1)) \nleq int(cl(\nu))$. Then, (M, τ) is FWF almost weakly top. sp. but not FWF almost strongly top. sp. .

Theorem 4.21. Assume that (M, τ) is an fuzzy regular space. For a FWF topological space (M, τ) over (B, σ) is FWF almost weakly ω -top. sp., then it is FWF almost strongly top. sp.. **Proof.** Assume that (M, τ) is a FWF almost weakly top. sp. over (B, σ) , then the proj. $p:(M,\tau) \to (B,\sigma)$ f. almost weakly continuous. It suffices to demonstrate that p is f. almost strongly continuous. Let $m \in M_b$; $b \in B$ and, λ be a fuzzy open set containing $p(m)$ in B. Because of p is f. almost weakly continuous, $m \in M_h$, $b \in B$ for each open set λ of B

containing $p(m)$ there is a fuzzy open set μ contains m so that $p(\mu) \leq cl(\lambda)$. Because the space M is a fuzzy regular space, there is a fuzzy open set $\mu_1 \in M$ such that $m \in \mu_1$ also $cl(\mu_1) \leq \mu$, so $p(cl(\mu_1)) \leq p(\mu)$. Also, $p(\mu) \leq cl(\lambda)$. Then, $p(cl(\mu_1)) \leq cl(\lambda)$ also, $int(cl(\lambda_1)) \leq cl(\lambda_1)$. Then, $(cl(\lambda_1)) \leq int(cl(\lambda_1))$. It follows that, p is f. almost strongly continuous. Hence (M, τ) is FWF almost strongly top. sp. .

Corollary 4.22. Assume that (M, τ) is an fuzzy regular space. For a FWF topological space (M, τ) over (B, σ) is FWF almost weakly ω -top. sp. if and only if it is FWF almost strongly top. sp. .

Theorem 4.23. Assume that (M, τ) is a FWF topological space over (B, σ) also (B, σ) is a fuzzy regular space. The following properties are equivalent:

- (a) FWF strongly top. sp. .
- (b) FWF top. sp. .
- (c) FWF weakly top. sp. .

Proof. The proof follows directory from by Theorems 4.12, 2.16.

Definition 4.24. [4] Let M and B be an fuzzy spaces are called fuzzy homeomorphic denoted by $M \cong B$ if there exists a fuzzy homeomorphism on M to B.

Theorem 4.25 The FWF topological space (M, τ) over (B, σ) is FWF strongly top. sp. Also (M, τ) is a fuzzy regular, so the graph fuzzy function $g: (M, \tau) \to (M, \tau) \times (B, \sigma)$, defined by $g(m) = (m, p(m))$, for each $m \in M$ is a f. strongly continuous.

Proof: Assume that (M, τ) is a FWF strongly top. sp. over (B, σ) , then the proj. $p: (M, \tau) \rightarrow$ (B, σ) f. strongly continuous mapping. Let $m \in M_h$, $b \in B$ and μ be a fuzzy open set of $M \times B$ containing $p(m)$. There exists fuzzy open sets $\xi_1 \in I^M$ and $\lambda \in I^B$ so that $(m, p(m)) < \xi_1 \times \lambda \leq \mu$. Where p is f. strongly continuous also, M is fuzzy regular space, there is an fuzzy open set ξ containing m in M so that $cl(\xi) \leq \xi_1$ also $p(cl(\xi)) \leq \lambda$. Therefore, $p(cl(\xi)) \leq \xi_1 \times \lambda \leq \mu$. Then, p is f. strongly continuous. Thus, the mapping $g = id_M \triangle p : (M, \tau) \rightarrow (M, \tau) \times (B, \sigma)$ maps fuzzy homeomorphically onto the graph $g(m)$ which is fuzzy closed subset of $M \times B$, so p is f. continuous and because M is an fuzzy regular, then $M \times B$ is fuzzy regular, by Theorem 4.24. Hence, $g: M \to M \times B$ is f. strongly continuous mapping.

Theorem 4.26. Assume that (M, τ) is a FWF topological space over (B, σ) also (B, σ) is a fuzzy regular space. The following properties are equivalent:

- (a) FWF almost strongly θ - ω -top. sp..
- (b) FWF ω -top. sp..
- (c) FWF almost ω -top. sp..
- (d) FWF θ - ω -top. sp..
- (e) FWF almost weakly ω -top. sp.

Proof. The proof follows directory from by Theorems 3.6, 2.15, 3.16.

References

- [1] G. H. Abdul Husein, *Some Types of Fuzzy Covering Dimension on Fuzzy Topological Spaces* , Ph.D. Thesis , College of Education , Al-Mustansiriyah University, (2021).
- [2] M. A. Al-khafaji, *On Separation Axioms Of Fuzzy Topological Spaces* , Ph.D. Thesis , College of Education , Al-Mustansiriyah University, (2006).
- [3] G. S. Ashaea and Y. Y. Yousif, *Some Type of Mapping in Bitopological Space* Baghdad Science Journal, Volume 18, Issue 1, Pages 149-155, (2021).
- [4] G. S. Ashaea and Y. Y. Yousif, *Weakly and Strongly Forms of ω-Perfect Mappings*. Iraqi Journal of Science, Special Issue, pp: 45-55(2020).
- [5] K. K. Azad, *On fuzzy semicontinuity, Fuzzy almost continuity and fuzzy weakly continuity*, J. Math. Anal. Appl*.,* 82 14-32(1981).
- [6] C. L. Chang, *Fuzz topological spaces*, Journal of Mathematical Analysis and Applications pp.182-190, 24 (1968).
- [7] M. A. Hussain and Y. Y. Yousif, *Some Type of Fibrewise Fuzzy topological spaces* International Journal Nonlinear Anal. Appl. (IJNAA), No. 2, 751-765, 12 (2021).
- [8] I. M. James, *Fibrewise topology*, Cambridge University Press, London (1989).
- [9] S. P. Lou, and S. H. Pan, "Fuzzy Structure", J. Math. Analy. and Application, Vol.76, PP.631- 642, (1980).
- [10] P. P. Ming, and L. Y. Mong, *Fuzzy Topology I. Neighborhood Structure of a Fuzzy point and Moor-smith Convergence*, J. Math. Anal. and Appl., Vol.76 PP.571-599(1980).
- [11] M. N. Mukherjee, and S. P. Sinha, *On Some Near – Fuzzy Continuous Function Between Fuzzy Topological Spaces*, J. Math. Anal. and Appl., Vol.34 PP. 245-254(1990).
- [12] C.V. Negoita, and D.A. Ralescu, *Application of Fuzzy Sets to Systems Analysis*, Basel, Stuttgart (1975).
- [13] J. H. Park, B. Y. Lee, and J. R. Choi, $Fuzzy \theta$ -Connectedness, J. Fuzzy Set and Systems, Vol.59, PP.237-244(1993).
- [14] X. Wang, D. Ruan and E. E. Kerre *Mathematics of Fuzziness – Basic Issues* Volume 245,pp.185-186(2009).
- [15] Y. Y. Yousif *Fibrewise Fuzzy Topological Spaces* Ibn Al Haitham Journal for Pure and Applied Science, Volume 34, No. 3, (2021).
- [16] Y. Y. Yousif and M. A. Hussain, *Fibrewise Soft Near Separation Axioms*, The 23th Science Conference of College of Education, Al-Mustansiriyah University, pp.400-414, 26-27 April (2017).
- $[17]$ Y.Y. Yousif and B. Khalil, *Feeble regular and feeble normal spaces in* α *-topological spaces using graph,* Int. J. Nonlinear Anal. Issu. 2, 32 Vol. 12, 415-423(2021).
- [18] L. A. Zadeh, *Fuzzy sets*, Inform. Control 8, pp.338-353(1965).
- [19] H.Zougdani *Covering Dimension of Fuzzy Spaces*, Mat. Vesnik, 36,104- 118, (1984).

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of attribution -NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0).