According to the theory of regular geometric functions, the relevance of geometry to analysis is a critical feature. One of the significant tools to study operators is to utilize the convolution product. The dynamic techniques of convolution have attracted numerous complex analyses in current research. In this effort, an attempt is made by utilizing the said techniques to study a new linear complex operator connecting an incomplete beta function and a Hurwitz–Lerch zeta function of certain meromorphic functions. Furthermore, we employ a method based on the first-order differential subordination to derive new and better differential complex inequalities, namely differential subordinations.
In this paper introduce some generalizations of some definitions which are, closure converge to a point, closure directed toward a set, almost ω-converges to a set, almost condensation point, a set ωH-closed relative, ω-continuous functions, weakly ω-continuous functions, ω-compact functions, ω-rigid a set, almost ω-closed functions and ω-perfect functions with several results concerning them.
The purpose of this paper is to find the best multiplier approximation of unbounded functions in –space by using some discrete linear positive operators. Also we will estimate the degree of the best multiplier approximation in term of modulus of continuity and the averaged modulus.
No. Due to their apparently extreme optical to X-ray properties, Narrow Line Seyfert 1s (NLSy1s) have been considered a special class of active galactic nuclei (AGN). Here, we summarize observational results from different groups to conclude that none of the characteristics that are typically used to define the NLSy1s as a distinct group – from the, nowadays called, Broad Line Seyfert 1s (BLSy1s) – is unique, nor ubiquitous of these particular sources, but shared by the whole Type 1 AGN. Historically, the NLSy1s have been distinguished from the BLSy1s by the narrow width of the broad Hb emission line. The upper limit on the full width at half maximum of this line is 2000kms−1 for NLSy1s, while in BLSy1s it can be of several thousands
... Show MoreIn this paper, we deal with games of fuzzy payoffs problem while there is uncertainty in data. We use the trapezoidal membership function to transform the data into fuzzy numbers and utilize the three different ranking function algorithms. Then we compare between these three ranking algorithms by using trapezoidal fuzzy numbers for the decision maker to get the best gains
Abstract
The research aims to build a training program to develop some executive functions for kindergarten children. To achieve this goal, the two researchers built the program according to the following steps:
1. Determining the general objective of the program.
2. Determining the behavioral objectives of the program.
3. Determining the included content in the program.
4. Implementing the content of the activities of the program.
5. Evaluating the Program.
The program included (12) training activities, the training activities included several items: the title of the activity, the time of implementation of the activity, the general objective of the activity, the procedural behavioral objective, the means and tools u
Necessary and sufficient conditions for the operator equation I AXAX n*, to have a real positive definite solution X are given. Based on these conditions, some properties of the operator A as well as relation between the solutions X andAare given.
The aim of this paper is to approximate multidimensional functions f∈C(R^s) by developing a new type of Feedforward neural networks (FFNS) which we called it Greedy ridge function neural networks (GRGFNNS). Also, we introduce a modification to the greedy algorithm which is used to train the greedy ridge function neural networks. An error bound are introduced in Sobolov space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result in [1]).
In this paper we introduce a lot of concepts in bitopological spaces which are ij-ω-converges to a subset, ij-ω-directed toward a set, ij-w-closed functions, ij-w-rigid set, ij-w-continuous functions and the main concept in this paper is ij-w-perfect functions between bitopological spaces. Several theorems and characterizations concerning these concepts are studied.