According to the theory of regular geometric functions, the relevance of geometry to analysis is a critical feature. One of the significant tools to study operators is to utilize the convolution product. The dynamic techniques of convolution have attracted numerous complex analyses in current research. In this effort, an attempt is made by utilizing the said techniques to study a new linear complex operator connecting an incomplete beta function and a Hurwitz–Lerch zeta function of certain meromorphic functions. Furthermore, we employ a method based on the first-order differential subordination to derive new and better differential complex inequalities, namely differential subordinations.
In this paper, a new class of harmonic univalent functions was defined by the differential operator. We obtained some geometric properties, such as the coefficient estimates, convex combination, extreme points, and convolution (Hadamard product), which are required
In this paper , certain subclass of harmonic multivalent function defined in the exterior of the unit disk by used generalize hypergeometric functions is introduced . In This study an attempting have been made to investigate several geometric properties such as coefficient property , growth bounds , extreme points , convolution property , and convex linear combination .
In this article, we introduce and study two new families of analytic functions by using strong differential subordinations and superordinations associated with Wanas differential operator/. We also give and establish some important properties of these families.
In this research paper, we explain the use of the convexity and the starlikness properties of a given function to generate special properties of differential subordination and superordination functions in the classes of analytic functions that have the form in the unit disk. We also show the significant of these properties to derive sandwich results when the Srivastava- Attiya operator is used.
In this paper we have studied a generalization of a class of ( w-valent ) functions with two fixed points involving hypergeometric function with generalization integral operator . We obtain some results like, coefficient estimates and some theorems of this class.
In this paper, we derive some subordination and superordination results for certain subclasses of p− valent analytic functions that defined by generalized Fox-wright functions using the principle of differential subordination, ----------producing best dominant univalent solutions. We have also derived inclusion relations and solved majorization problem.
The main goal of this paper is to study applications of the fractional calculus techniques for a certain subclass of multivalent analytic functions on Hilbert Space. Also, we obtain the coefficient estimates, extreme points, convex combination and hadamard product.
The main objectives of this pepper are to introduce new classes. We have attempted to obtain coefficient estimates, radius of convexity, Distortion and Growth theorem and other related results for the classes
The aim of this paper is to introduce a certain family of new classes of multivalent functions associated with subordination. The various results obtained here for each of these classes include coefficient estimates radius of convexity, distortion and growth theorem.