In this paper, we deal with games of fuzzy payoffs problem while there is uncertainty in data. We use the trapezoidal membership function to transform the data into fuzzy numbers and utilize the three different ranking function algorithms. Then we compare between these three ranking algorithms by using trapezoidal fuzzy numbers for the decision maker to get the best gains
Game theory problems (GTP) frequently occur in Economy, Business Studies, Sociology, Political Science, Military Activities, and so on are some of the subjects covered. To tackle the uncertainty in Games, the analysis of games in which the payoffs are represented by fuzzy numbers (FN) will benefit from fuzzy set theory (FST).
The purpose of this paper is to develop an efficient technique for solving constraint matrix games (MG) with payoff trapezoidal fuzzy numbers (TFN). The description of the new ranking method is introduced for a constrained matrix with TFN and values. Stock market forecasting has been one of the most important research areas for decades. Stock market values are volatile, non-linear, complicated and ch
... Show MoreThe attribute quality control charts are one of the main useful tools to use in control of quality product in companies. In this paper utilizing the statistical procedures to find the attribute quality control charts for through fuzzified the real data which we got it from Baghdad Soft Drink Company in Iraq, by using triangular membership function to obtain the fuzzy numbers then employing the proposed ranking function to transform to traditional sample. Then, compare between crisp and fuzzy attribute quality control.
A multivariate control chart is measured by many variables that are correlated in production, using the quality characteristics in any product. In this paper, statistical procedures were employed to find the multivariate quality control chart by utilizing fuzzy Hotelling test. The procedure utilizes the triangular membership function to treat the real data, which were collected from Baghdad Soft Drinks Company in Iraq. The quality of production was evaluated by using a new method of the ranking function.
The fuzzy sets theory has been applied in many fields, such as operations research, control theory and management sciences, etc. In particular, an application of this theory in decision making problem is linear programming problems with fuzzy technological coefficients numbers, as well as studying the parametric linear programming problems in the case of changes in the objective function. In this paper presenting a new procedure which connects and makes link between fuzzy linear programming problem with fuzzy technological coefficients numbers and parametric linear programming problem with change in coefficients of the objective function, then develop a numerical example illustrates the steps of solution to this kind of problems.
In many applications such as production, planning, the decision maker is important in optimizing an objective function that has fuzzy ratio two functions which can be handed using fuzzy fractional programming problem technique. A special class of optimization technique named fuzzy fractional programming problem is considered in this work when the coefficients of objective function are fuzzy. New ranking function is proposed and used to convert the data of the fuzzy fractional programming problem from fuzzy number to crisp number so that the shortcoming when treating the original fuzzy problem can be avoided. Here a novel ranking function approach of ordinary fuzzy numbers is adopted for ranking of triangular fuzzy numbers with simpler an
... Show MoreThe aims of the paper are to present a modified symmetric fuzzy approach to find the best workable compromise solution for quadratic fractional programming problems (QFPP) with fuzzy crisp in both the objective functions and the constraints. We introduced a modified symmetric fuzzy by proposing a procedure, that starts first by converting the quadratic fractional programming problems that exist in the objective functions to crisp numbers and then converts the linear function that exists in the constraints to crisp numbers. After that, we applied the fuzzy approach to determine the optimal solution for our quadratic fractional programming problem which is supported theoretically and practically. The computer application for the algo
... Show MoreIn this paper, the series solution is applied to solve third order fuzzy differential equations with a fuzzy initial value. The proposed method applies Taylor expansion in solving the system and the approximate solution of the problem which is calculated in the form of a rapid convergent series; some definitions and theorems are reviewed as a basis in solving fuzzy differential equations. An example is applied to illustrate the proposed technical accuracy. Also, a comparison between the obtained results is made, in addition to the application of the crisp solution, when theï€ ï¡-level equals one.
In this article, we aim to define a universal set consisting of the subscripts of the fuzzy differential equation (5) except the two elements and , subsets of that universal set are defined according to certain conditions. Then, we use the constructed universal set with its subsets for suggesting an analytical method which facilitates solving fuzzy initial value problems of any order by using the strongly generalized H-differentiability. Also, valid sets with graphs for solutions of fuzzy initial value problems of higher orders are found.
There are several methods that are used to solve the traditional transportation problems whose units of supply, demand quantities, and cost transportation are known exactly. These methods obtain basic solution, and develop it to the best solution through a series of consecutive calculations to obtain the optimal solution.
The steps are more complex with fuzzy variables, so this paper presents the disadvantages of solutions of the traditional ways with existence of variables in the fuzzy form.
This paper also presents a comparison between the results that emerged after using different conversion ranking formulas to convert from fuzzy form to crisp form on the same numerical example with a full fuzz