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Abstract

In this paper we introduce some generalizations of some
definitions which are, closure converge to a point. closure directed
towiard a set, almost w-converges to a set, almost condensation point, a
set wH-closed relative, w-continuous functions, weakly w-continuous
functions, o-compact functions, w-rigid a set. almost w-closed
functions and w-perfect functions with several results concerning them.

L. Introduction and Preliminaries:

The notion "filter” first appeared in Riesz (1) and the setting of

convergence in terms of filters was sketched by Cartan in (2) and (3)

and was descloped by Bourbuki in (4), Whyburmn in (3) introduced the

noton directed toward o set and the generalization of this notion is
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studied in section 3, Dickman and Porter in (6) introduced the notion
almost convergence, Porter and Thomas in (7) introduced the notion
quasi-H-closed and the analogues of this notions are studied in section
4, Levine in (8) introduced the notion f-continuous functions, Andrew
and Whittlesy in (9) introduced the notion weakly 8-continuous
functions. Dickman in (6) introduced the notions O-compact functions,
f-rigid a set, almost closed functions and the analogues of these notions
are studied in section 5, Whybum in (5) introduced the notion 8-perfect
functions and the analogue of this notion is studied in section 6.

In this work, the neighborhood denoted by nbd, for a subset A
of a topological space X, the closure of A denoted by cl(A) and @
denotes the cardinal number of integers.

2. Basic Definitions:

Definition(2.1), (4): A filter 3 on u set X is a nonempty collection of
nonempty subsets of X with the properties:

() If Fy, F2 3. then F\NFe 3,

(b) 1f Fe3 and FCF*cX., then F*€ 3.

Definition(2.2), (4): A filter base 3 on a set X is a nonempty collection
of nonempty subsets of X such that if Fy, F.€3 then FagFNF; for
some Fye 3.

The filter generated by a filter base 3 consists of all supersets of

elements of 3. An open filter base on a space X is a filter base with
open members. The set &, of all nhds of xe X is a filter on X, and any
nbd base at x is a filter base for ®,. This filter called the nbd filter at x,
(10,
Definition(2.3), (4): A filter base 3 on a space X is said to converge o
e X (written as 3—x) iff every open set U about x contains some
clement Fe 3. We say 3 has x as a cluster point (or 3 cluster at x) iff
every open set U about x meets each element Fe 3.

Clear that if 3—x. then 3 cluster at x, (10).

Definition(2.4), (4): If 3 and G are filter bases on X, we say that Gis
finer than 3 (written as 3 < G) if for each Fe 3, there is Ge G such that
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GCF and that § meets G if FNG#¢ for every Fe 3 and GeG. If also
3#G then G is said to be strictly finer than 3.

Notice, 3—x iff ¥, <3 (means, 3 finer than X,). (10).
Definition(2.5), (5): A filter base 3 on a space X is said to be directed
toward a set AcX, provided every filter base finer than S has a cluster
point in A. (Note: No filter base can be directed toward the empty set).
Definition(2.6), (4): A filter 3 is said to be an ultrafilter if there is no
strictly finer filter G than T (in other words, the ultrafilter is the
maximal element in the ordered set of all filters on X).

Definition(2.7), (4): A point x of a space X is called a condensation
point of the set AcX if every nbd of the point X contains an
uncountable subset of this set,

Clearly the set of condensation points of a set A is closed.
Definition(2.8), (11): A subset of a space X is called w-closed if it
contains all its condensation points. Also cl®A will denote the
intersection of all w-closed sets which contains A, i.e., cI“A=N(F: Fis
or-closed and ACF|, then A is w-closed iff A=cl“A.

3. Filter Bases and Closure Directed Toward a Set:

Lemma(3.1), (5): Let [': X=Y be an injective function.

() If 3=[F : FCX] is a filter base in X, then {(3)={f(F) : Fe3}isa
filter base in Y.

(b) If G={G : Gf(X)) is a filter base in f(X), 3=(f ""(G) : GeG) isa
filter base in X. For any nonempty set A in X and any filter base G
in f(A). then (ANF(G) : GeG) is a filter base in A,

{c) If I={F : FcX) is a filter base in X. G=(f(F) : Fe3}, G* is finer
than G, and 3*={f "(G*) : G*eG*]. then the collection of sets
I**=(FOF* for all Fe3 and F*€3*} is liner than both of § and
g2,

Now, we will give generalizations of definitions (2.3) and (2.5)

s Jollows,
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Definition(3.2): A filter base 3 on a space X is said to closure

converges to x€ X (written as 3~~x) iff every open set U about x, the
cl(U) contains some element Fe 3. We say 3 has x as a closure cluster
point (or 3 closure cluster at x) iff every open set U about x the clU
meets each element Fe 3,

Clear that if 3~x, then 3 closure cluster at x. cl{X,) is used to

denote the filter base [¢lU : Ue Ry ). Notice, 3~ x iff cl(Ry) < 3
Definition(3.3): A filter base 3 on a space X is said to be closure
directed toward a set AcX, provided every filter base finer than 3 hasa
closure cluster point in A.

Whyburn prove in (5) theorem(2,d), theorem(2,e) and
theorem(3). We show that these theorems remains true if we replace
“converge” and “directed toward” by the more general concept of
“closure converges™ and “closure directed toward" and obtain the same
conclusion which are in theorem(3.4), theorem(3.5) and theorem(3.6).
Theorem(3.4): A filter base 3 in a space X closure converges to a
point x iff § is closure directed toward x.

Proof: (=) If 3~x, every open set U about x, the cl(U) contains a
member of 3 and thus contains a member of any filter base 3* finer
than G, so that 3* actually closure converges 10 X.

(=) If § is closure directed toward x, it must closure converge to x. For
if not, there exists an open set U in X about x such that cl(U) contains
no element of 3. Denote by 3* the family of sets F*=FN(X~cl(U)) for
Fe 3. then the sets F* are nonempty ( if not, then F*=¢ and FIN(X-
cl(U))=0, so FeX~(X~cl{U)) and Fcel(U) which is contradiction with
the ¢l(U) contains no element of 3). Also 3* is a filter base and indeed
it is finer than 3, because given Fy*=F M(X-cl(U)) and Fy*=Fa{X-
cl(U)), there is an FygF/OF: and this gives Fa¥=F.\1(X-
U)cF, NFN(X=U) =F,N(X~-U)NFaN(X-U). By construction x is not a
closure cluster point of 3*. This is a contradiction, and thus 3~ x.
Theorem(3.5): Let f : X—Y be an injective function and given BSY.
If for each filter base G in 1(X) closure directed toward a point y€ B,
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the inverse filter M =(f~ l(('1‘) : Ge G) is closure directed toward f “'(y).
then for any filter base 3 of sets in f(X) closure directed toward a set B,
E = (f'(F) : Fe 3 is closure directed toward A=f"(B).

Proof: By hypothesis “for each filter base G in fiX) closure directed
toward a point ye B, the inverse filter M =(f '(G) : GeG) is closure
directed toward f ~'(y)" any ye B which is a closure cluster point of a
filter base finer than 3 must be in £(X). Thus not only is BNf(X)#, but
. since any filter base 3 of sets in f(X) closure directed toward a set B,
also 3 is closure directed toward BNf(X), Thus we may assume
BCf(X). Let M be a filter base finer than E. Then G=(f(M) : MeM )
finer than 3 by lemma (3.1, a). Thus G has a closure cluster point z in
B and a filter base G* finer than G closure converges to z and thus is
closure directed toward z. By hypothesis M*=(f ~'(G*) : G*eG?*) is
closure directed toward f~'(z). Also by lemma (3.1, ¢), M and M* have
4 common filter base M** finer than of them. Thus M** has a closure
cluster point x in f '(2). Since X is then a closure cluster point of M
and xe f '(2)cA, our conclusion follows,

Theorem(3.6): A function [ : X—Y is closed and has compact point
inverses iff for cach filter base 3 in f{X) closure directed toward a set B
in Y, the inverse family E ={f '(F) : FeS) is closure directed
toward {'(B).

Proof: (=) Suppose [ is closed and has compact point inverses. Then
by Theorem: (3.4) and (3.5) it suffices to show that if G is a filter base
in f(X) closure converging to a point y in B, then M={f (G) : Ge G} is
closure directed toward f ~'(y). Suppose that to the contrary, that for
some filter base M* finer than M, no point of f '(y) is a closure cluster
point of M*. We show. however, that this leads to the contradiction that
the filter base G*={1tM*) : M*&eM*| finer than G cannot  closure
converge to y. For each x& ~'(y). by supposition there is an open set U,
about x and M, *e M* with M, *11U=¢. Since T (y) is compact, it is
contained in a finite union U=wull . Of the sets U, Let M* is an element

ol M* which is contined in the intersection 1'M « T and let V be the
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open set Y-f(X-U). Then f(M*)NV=¢ because M*cX—clU. Thus
since f(M*)e G*, G* cannot have y as a closure cluster point.

() Suppose our condition is satisfied but f is not closed. Let A be a
closed set in X such that some ye Y={(A) is a closure cluster point of
f(A). Let G be a filter base of sets f(A)NV for all open sets Vin Y
containing y, then G is a filter base in f(X) closure converging to y. Let
M ={f (G) : GeG) and M*=[ANM : MeM]|. It readily follows that
M* is finer than of M. But since X~A is open and contiins f~'(y), M*
has no closure cluster point in f “!(y). This is a contradiction, and thus f
must be closed. Finally, to show each f “!{y) is compact, we have only
1o show that every filter base of subsets of f “!(y) has a closure
cluster point in £ ~(y). This is trivial for ye Y=f(X). Also for yef(X),
ly) is a filter base in {(X) closure directed toward y. By hypothesis, {f~
'(y)) must be closure directed toward f “*(y). This means that every
filter base of sets in f~'(y) has a closure cluster point in f~'(y), so that f
) '(y) is compact.

Corollary(3.7): A function f : XY is closed and has compact point
inverses iff each filter base in f(X) closure converging 10 yeY has
inverse filter base closure directed toward f'(y).

Proof: The proof is casy, so it is omitted.

Corollary(3.8): If f : XY is closed and has compact point inverscs,
then the inverse of any compact set in Y is compact.

Proof: For if K is any compact set in Y and 3 is a filter base in (K,
G ={f(F) : Fe 3], is a filter base in K and in f(X) and is closure directed
toward K. Thus [T (G) : Ge G} is closure directed toward f'(K) so
that it is finer than S and has a closure cluster point in { ' (K),

4. Filter Bases and Almost o-Convergence:

By analogue of the definition of almost convergence in (6) we
can give the following definition,
Definition(4.1): Let 3 be a filter buse on a space X. We say 3 almost
m-converges 10 a subsel AcX (written as 3o~ A) il for every cover A

of A by subsets open in X. there is a fimite subtamily B < A und Fed
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such that Fou(cl”B : Be B). We say 3 almost w-converges to a point
x€ X (written as 3@ ~=x) if Jo~~(x].

Now, cl(¥,)~=x, where as, c]”( R )@0~x.

Also, we introduce the following definitions:

Definition(4.2): A point xe X is called an almost condensation point of
a filter base 3 (written as xealex3) if 3 meets cl“(R,).

For a set AcX, the almost w-closure of A, denoted as al A is
alex{A} i AzQ e, [xeX : every w-closed nbd of x meets A} and is ¢
il A=9; A 1s almost w-closed iIf A=alc,A. Correspondingly, the almost
w-interior of A, denoted as inteA, is [xe X ; c|“UA for some open set
U containing x ); A 1s almost w-interior if A=intyA.

Theorem(4.3): Let 3 and G be filter bases on a space X, AcX and
xeX.

{(a) If So~A, then cl"(KA) < 3.

(b) If So==x. i cl™(¥)<3J.

() If 3 <G, then alexG calex3

() If 3 <Gand Jw-~A, then Gus~A.
(¢) alex3=N{al,F:FeJ).

(f) If Jw~x and x€ A, then Jw-~A.
(g) If So~~A iff Jom~ ANaleyJ.

(h) If Sw~ A, then ANalcx320.
(1) W Uc<X 1s open, then al,U=clU.
(3) If 3 is a open filter base, then alyI=alcx3.
(k) If U is an open ultrafilter on X, then U=~ x iff Uw~x.
Proof: The prool is casy, so it s omitted,

By anulogue of the definition of quasi-H-closed relative in (7)
we can give the following defimtion.
Definition(4.4): The subset A of u spuce X is suid 1o be quasi-wH-
closed relative to X if every cover A of A by open subsets of X
contains  finite subfumily B < A such that Acu(cl”B : BEB |. If X is
Hausdortl, we say that A s @H-closed refative to X. I X s quasi-wlH-

288




closed relative to itself, then X is said to be quasi-wH-closed (resp..
wH-closed).

Theorem(4.5): The following are equivalent for a subset ACX:

(a) A is quasi-@H-closed relative to X.

(b) For every filter base 3 on A, J0~A.

(¢) For every filter base 3 on A, alex3MNA=0.

Proof: Clearly (a)=(b), and by theorem (4.3, h), (b)=»(c).To show

(¢)=>(a), let A be a cover of A by open subsets of X such that the ®-

closed of the union of any finite subfamily of A is not cover A. Then

S={A\cI®(sU,) : S is finite subfamily of A is a filter base on A and

alcx3NA=¢. This contradiction yields that A is quasi-wH-closed

relative to X,

The concepts of closure directed toward a set and almost @-
convergence are characterized and related in the next resull,
Theorem(d.6): Let 3 be a filter base on a space X and A <X,

(a) Then 3 is closure directed towards A iff for every cover A of A by
open subsets of X, there is a finite subfamily B < A and an Fed
such that Fguicl®B : BeB).

(b) Then for every filter base G, 3 < G implies alexGNA#Q il

Fw~A.

Proof: The proof of the two facts are similar: so, we will only prove the
fact (b): (=) Suppose for every filter base G, 3 < G implies

aleyGNA=0. If 3w~~x for some xeA, then by theorem (4.3, ),

Fw~A. So, suppose that for every xe A, 3 does not @~x. Let Abea
cover of A by subsets open in X. For each x€ A, there is an open set U,
containing x and V.eA such that UV, and Fiel”xU20 for every
Fe3. Thus, G.=|F\ ¢cl“xU, : Fe 3| is a filter base on X und 3 < G..
Now, x€ alexG.. Assume that UG, - x€ A} forms a filter subbase with
G denoting the generated filier. Then 3 < G and alexGNA=0¢. This
contradiction implies there is a finite subset BeA and Fie3 for xeB
such that. ¢=N{F, \ el®\U, . xeB}. There is Fe 3 such that Fel(F, :
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xeBJ. It easily follows that ¢=N(F \cI”xU, : xe B} and Fgulcl®V, :
x€B). Thus S~ A.

(<=) Suppose Jw~A und G is a filter base such that 3 < G. By
theorem (4.3, d), G~ A, and theorem (4.3, h), alxGIA#0.

5. Filter Bases and o-Rigidity:

By unalogues of definitions 8-continuous functions in (7) and
weakly B-continuous functions in (8) one can define.
Definition(5.1): A function f : X—=Y is @-continuous (resp., weakly -
continuous) if for every x€ X and every nbd V of f(x), there exists a
nbd U of x in X such that f(cl®(U))el®V (resp., f(U)ccl™V ). Clearly,
every continuous function is @-continuous.

The notions of almost w-convergence and almost condensation
can be used to characterize w-continuous.
Theorem(5.2): Let f : X—Y be a function. The following are
equivalent:
(a)  fis e-continuous,
(b) Forevery filter base 3 on X, 3w~~~ x implies f(3)—f(x).
(c) Forevery filter base 3 on X, flaleS)cale f(3).
(d) For every open UZY, f(U)cint,f ' (al,U).
Prool: The proof of the equivalence of (a), (b)and (d) is
straightforward.
(a)=>(c} Suppose 3 is a filter base on X, xealcD, Fe3 and V is a nbd
of f(x). There 1s a nbd U of x such that f(cl*U)ccl®V. Since cl®UNF#
9. then cI"VNI(F)zd. So. f(x)eale f(3). This shows that flalcS)cale
ft3).
(c)=>(4) Let U be an ultrafilter containing flcI”®,). Now. f "'(U) is a
filter base since iX)eU and £ '(U) meets ¢, So. ' (Uioel™X, is
contained in some ultrafilter V. Now £ £7'(U) is an ultrafilter base that
generates U. Since f 1 7(U)<f(V), then f(V) also generates U; hence
alel(V)=alel). Since xeule(V), then f(x)e faleVigulel(Vi=alcl. So, U
meets cl(X,,,) and. "Xy VU : U ultrafilter. Uoi(cl“X,)),
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(denote this intersection by G). But G is the filter generated by (cl"X,)
(see (4) proposition 1.6.6); so cl”(Xqy) < f(cl“Ry). Hence f is @
continuous.

Corollary(5.3): If f: X=Y is w-continuous and AcX, then f(aluA)

caluf(A).

Here are some similarly proven facts about weakly -
continuous functions.
Theorem(5.4): Let f : X—Y be a function. The following are
equivalent:
(a) fis weakly @-continuous.

(b) For every filter base S on X, 3—x implies f(3)e~-f(x).
(¢) For every filter base 3 on X, f{alcS)galc f(3).
(d) For every open UCY, ' (Ugint f (1 U).
Theorem(5.5): If f: XY is weakly w-continuous, then
(a) Foreach AcX, f(cl“A)zalof(A).
(b} For each BCY, f(cl® (int(cl” £'(B))cel” B,
(c) Forevery open UCY, f(cl“Uicel®f (L),

By analogues of the definitions of 8-compact functions, B-rigid
u set and almost closed in (6) we can give the following definitions.
Definition(5.6): A function [ : X—Y is said to be w-compact if for
every subset K quasi-wH-closed relative 10 Y, f "'(K) is quasi-oH-
closed relative to X.
Definition(5.7): A subset A of a space X is said 10 be w-ngid provided
whenever 3 is a filter base on X and ANalex3=9, there is an open U
containing A and Fe 3 such that c]"UNF=9.
Definition(5.8): A function f : XY is said 10 be almost w-closed if
for any set AcX, f(alpA)=nl.f{A),
Definition(5.9): A space X is said to be m-Urysohn if every pair of
distinet points are contained in disjoint @-closed nhds,

Before charncterizing o-rigidity, we show that a @-continuous,
w-compact function into a @-Urysohn space with a certain property (the
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“w-closure” and “quasi-wH-closed relative” analogue of property o in
(5)) is almost w-closed.

Theorem(5.10): Suppose f : X—=Y is a o-continuous and -compact
and Y 1s w-Urysohn with this property: For each BY and yeal,B,
there is a subset K quasi-oH-closed relative 1o Y such that
ve alo,(KNB). Then f is almost w-closed.

Proof: Let AcX. By corollary (5.3), flal,A)zal f(A). Suppose ye
aluftA) There is o subset K quasi-wH-closed relative to Y such that ye
alu,(KNf(A)). Then 3={cI"UNKNI(A) : Ue K,), is a filter base on Y

such that 3e~y. Now, G =[ANf"'(F) : Fe 3} is a filter base on ANf~
'(K). Since f '(K) is quasi-oH-closed relative to X, then there is
xealexGN f '(K). By theorem (5.2), fix)ealeyf(G)caleyS. Since

Jw~-y und Y is @-Urysohn, alcy3=(y}. Thus, ye f(aleA).

Theorem(5.11): Let A be a subset of a space X. The following are

cquivalent:

(a) Aisengidin X

(b) For any filter base 3 on X, if ANalcx3=0. then for some Fe3,
ANal F=¢.

(c) For each cover A of A by open subsets of X, there is a finue
subfamily B < A such that Acint ¢I” (UB ).

Proof: The proof that (a)=>(b) is straightforward. (b)=s(c) Let A he a

cover of A by open subsets of X and =My p (X Vel U): Bisa

finite subset of A). If 3 is not a filter base, then for some finite

subfamily B ¢ A, Xcu|cl®U : Ue BJ; thus, AcXcint ¢l“(wB) which

completes the proof in the case that 3 is not a filter base. So, suppose 3

is a filter base. Then ANalc3=¢ and there is an Fe3J such that

AlalyF=0. For each xe A, there is open V, of x such that ¢V, (1F=¢.

Let V=Ul[V, : xeA]. Now, VNF=0. Since Fe3J, then for some finite

subfamily B < A, F=i\{X\cl®U : UeB). It follows that Vgel“(WB) and

henee, Agint cl*(UB).

(=) Ler 3 be a filter base on X such that Afale3=¢. For each

ve A there is open V, of x and F.e 3 such that ¢V, (1F,=d. Now |V, :

292




xeA) is a cover of A by open subsets of X; so, there is finite subset
BcA such that Acint ¢l”(U Vy: xe B}). Let U=int cl(ulV, : xeBY).
There is Fe 3 such that FN(Fy : xe B). Since cl”U=u(cl”V,: xe B},
then cl®UNF=0. Thus A is @-rigid in X.
6. Filter Bases and @-Perfect Functions:

From corollary (3.7), coroliary (3.8) and in view theorem (4.6),
we say that a function f: XY is w-perfect if for every filter base S on

f(X), Sw~yeY implies { ' (3)w~F"'(y).

Theorem(6.1): Let f : X—=Y be a function. The following are
equivalent:

{a) fis w-perfect.

(b) For every filter base 3 on X, alc f(3)cf(alc3).

(¢) For every filter base 3 on f(X), 3w~BY, implies F4(3)

@={"'(B).
Proof: (a)=(b) Suppose 3 is a filter base on X and yeale f(3).
Assume, by way of contradiction, that f '(y)Nalc3=0. For each xef "
l(y). there is open U, of x and F,e 3 such that ¢I”U,NF,=¢. Since

'(cl“’R,)m—wl’"(y) and (U, ! xef"(y)l is an open cover of f"(y).
there is @ VER, and a finite subset Bgf '(y) such that f ~
(eI"Vyculcl®U, : xeB). There is an Fe3 such that FCN{F : xe B},
Thus, FNE ' (c1”V)=0¢ implying ¢I“VNf(F)=$, a contradiction as yealc
f(3). This shows that ye& f(alc 3).

(b)=>(c) Suppose J is a filter base on f(X) and Jo~BcY. Let G be a
filter base on X such that  '(3) < G. Then 3 < f{G) and ale {(G)1B#).
Hence f(alc G)NB26 and alc GNf ~'(B) ¢. By theorem (4.6, b), { '(3)
w1 (B).

{¢c)=(a) Clearly.

Corollary(6.2): If [ : X—=Y is @-perfect, then [ 1s @-compact.

Proof: Let K be quasi-wH-closed relative to Y, and G be a filter base
on { "(K). then (G) is a filter base on K. By theorem (4.5),
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alcf(G)NK#¢ and by theorem (6.1, b), aleGNf ~'(K) #¢. By theorem

(4.5), f (K) is quasi-H-closed relative to X.

Theorem(6.3): A @-continuous function f: X—=Y is a-perfect iff

(a) fis almost w-closed, and

{b) point-inverses are w-rigid.

Proof: (=) If [ is w-continuous and w-perfect, then by corollaries (6.2)

and (5.3), T is almost @-closed. To show f~'(y), for ye Y, is w-rigid, Let

3 be a filter base on X such that f '(yiNalc3=¢. So, y f(alc3) and by

Theorem: (6.1, b), yealc f(3). There is open U of y and Fe 3 such that

cI"UNF(F)=¢. Therefore, f'(cI®U)NF=¢. Since f is w-continuous, then

for each xef “(y), there is open V of x such that cl“Vf ~'(cl®U).

So, f'(y)Nel F=¢.

(&) Suppose a w-continuous function f satisfies (a) and (b). Let 3 be a

filter base on f(X) such that 3w~y Let G be a filter base on X such

that { (3) < G. So, 3 < f(G) implying that ye alc f(G). So, for every

GeG, ye ul f(G)cf(al,G). Hence, f ' (v)Nal,G=d for every GeG. By

(b), £ '(y) NaleG=0. By theorem (6.1), f is w-perfect.

Corollary(6.4): Let f; X—=Y. If (a) for each ACX, aluf{A)CHalaA)

and (b) point-inverses are @-rigid, then £ is w-perfect.

Corollary(6.5): Let { : X—=Y. (a) { 1s almost w-closed, and (b) point-

inverses are w-rigid, then ' preserves w-rigidity.

Proof: Let KcY be @-rigid and 3 be a filter base on X such that

alex30N f(K)=9. By corollary (6.4) and theorem (6.1), alef(3)NK=0.

So, there is FeJ such that al, fiF)NK=9¢. But al,f(F)=f(al,F). So,

al FOf ' (K)=¢. So, by theorem (5.11), £ (K) is w-rigid.

Theorem(6.6): Suppose [ : X—Y has @-rigid point-inverses. Then:

(u) [ is @w-conunuous il for each ye Y and open set V containing vy,
there is an open set U containing f "(y) such that fie!™U)gel™V.

(b} If for each ye Y and open set U contamning [ '(y), there is an open
set V of y such that £ (¢1“V)cel®U, then for each ACX. al(f(A)S
ftaluA).

Proof: (a) (=) Obvious

0.




(¢=) Is straightforward using theorem (5.11, ¢)
(b) Let ¢=AcX and yef(alw‘\) Then ' (y)nalyA=0. Now, 3={A} is a
filter base and alc3f " (y)=6. So, there is open sct U continuing f(y)
such that ¢I®UnA=0. There is open V of y such that f '(el“Vigel“U.
So, cl“VAf(A)=0. Hence y& al,f(A).

The next result is closely related to theorem (6.7, b); the proof is
straightforward.
Theorem(6.7): Let f : X—Y . The following are equivalent:
(1) Forevery w-closed ACX, f(A)1s w-closed.
(b) For every BCY and (n—open U containing [~ '(B), there is w-open V

containing B such that { (V);U.

Theorem(6.8): If f : XY is w-continuous and Y is @-Urysohn, then f

is @-perfect iff for every filter base 3 on X, if f(3)o~yeY, then
alexS=0.
Proof: (=) Suppose f is @-perfect and f(3)w~y. So, (S~ f

"y). Since f'f(3) < 3, then by theorem (4.3. d), Sm~f '(y), by
theorem (4.3, h), alc 3=9.

(e=) Suppose for every filter base 3 on X, if (J)w~yeY, then

alex3#¢. Suppose G is a filter base on f(X) such that Go~~ye Y, and
suppose H is a filter base on X such that f~ '(G) < H. Then G=ff~ "G) <

f(H). So, (H)w~y. Hence. alcxHz(. Let zeY\ly). Since Y is @
Urysohn, there are open sets U, of z and U, of y such that
l“U,Nel”Uy=6. There is He H such that f(H) ccl®U,, For each xef~
'(2). there is open V, of x such that 1(c1”V,)cel“U,. So. cl“V,NH=0. It
follows that T ~'(z)NalcxH=0 for each z& Y\{y]. So. alexHNf ~'(y)2¢
and f is @-perfect

Corollary(6.9): [f [ - X—=Y is w-continuous, X 1s quasi-oH-closed, and
Y is w-Urysohn, then fis e-perfect,

Proof: Since X is quasi-wH-closed, then every filter base on X has

nonvoid almost condensation; now, the corollary follows directly from
theorem (6.3)
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