According to the theory of regular geometric functions, the relevance of geometry to analysis is a critical feature. One of the significant tools to study operators is to utilize the convolution product. The dynamic techniques of convolution have attracted numerous complex analyses in current research. In this effort, an attempt is made by utilizing the said techniques to study a new linear complex operator connecting an incomplete beta function and a Hurwitz–Lerch zeta function of certain meromorphic functions. Furthermore, we employ a method based on the first-order differential subordination to derive new and better differential complex inequalities, namely differential subordinations.
In the complex field, special functions are closely related to geometric holomorphic functions. Koebe function is a notable contribution to the study of the geometric function theory (GFT), which is a univalent function. This sequel introduces a new class that includes a more general Koebe function which is holomorphic in a complex domain. The purpose of this work is to present a new operator correlated with GFT. A new generalized Koebe operator is proposed in terms of the convolution principle. This Koebe operator refers to the generality of a prominent differential operator, namely the Ruscheweyh operator. Theoretical investigations in this effort lead to a number of implementations in the subordination function theory. The ti
... Show MoreThe paper is devoted to solve nth order linear delay integro-differential equations of convolution type (DIDE's-CT) using collocation method with the aid of B-spline functions. A new algorithm with the aid of Matlab language is derived to treat numerically three types (retarded, neutral and mixed) of nth order linear DIDE's-CT using B-spline functions and Weddle rule for calculating the required integrals for these equations. Comparison between approximated and exact results has been given in test examples with suitable graphing for every example for solving three types of linear DIDE's-CT of different orders for conciliated the accuracy of the results of the proposed method.
We introduce some new generalizations of some definitions which are, supra closure converge to a point, supra closure directed toward a set, almost supra converges to a set, almost supra cluster point, a set supra H-closed relative, supra closure continuous functions, supra weakly continuous functions, supra compact functions, supra rigid a set, almost supra closed functions and supra perfect functions. And we state and prove several results concerning it
Background: Cognitive dysfunctions in epileptic patients may develop due to the neurophysiologic changes related to seizures or antiepileptic drugs.
Objectives: The aim of this longitudinal study was to evaluate the cognitive dysfunction in epileptic patients under antiepileptic drug therapy by the aid of event related potentials.
Patients & Method: P300 latencies were obtained from Fz, Cz and Pz electrodes positions from both epileptic patients (n = 224) and age and sex matched control group (n = 91). Epileptic patients were classified either having partial epilepsy, generalized epilepsy or both partial and generalized epilepsy (combined epilepsy). EEG and p300 test repeated for each patient every three months for one year. Th
The main objective of this paper is to introduce and study the generality differential operator involving the q-Mittag-Leffler function on certain subclasses of analytic functions. Also, we investigate the inclusion properties of these classes, by using the concept of subordination between analytic functions.
We introduce a new class of harmonici multivalent functions define by generalized Rucheweyh derivative operator. We also obtain several interesting propertiesi such as sharp coefficienit estimates, distortioni bound, extreme points, Hadamardi product and other several results. Derivative; extreme points.
In this paper, we consider new subclasses of meromorphic uniformly of multivalent functions in with fixed second coefficient, we obtain the estimation of coefficients, distortion theorems, closure theorems and some other results.
The purpose of this paper is to find the best multiplier approximation of unbounded functions in –space by using some discrete linear positive operators. Also we will estimate the degree of the best multiplier approximation in term of modulus of continuity and the averaged modulus.