In this paper, we investigate some methods to solve one of the multi-criteria machine scheduling problems. The discussed problem is the total completion time and the total earliness jobs To solve this problem, some heuristic methods are proposed which provided good results. The Branch and Bound (BAB) method is applied with new suggested upper and lower bounds to solve the discussed problem, which produced exact results for in a reasonable time.
Real life scheduling problems require the decision maker to consider a number of criteria before arriving at any decision. In this paper, we consider the multi-criteria scheduling problem of n jobs on single machine to minimize a function of five criteria denoted by total completion times (∑), total tardiness (∑), total earliness (∑), maximum tardiness () and maximum earliness (). The single machine total tardiness problem and total earliness problem are already NP-hard, so the considered problem is strongly NP-hard.
We apply two local search algorithms (LSAs) descent method (DM) and simulated annealing method (SM) for the 1// (∑∑∑
... Show MoreThe presented study investigated the scheduling regarding jobs on a single machine. Each job will be processed with no interruptions and becomes available for the processing at time 0. The aim is finding a processing order with regard to jobs, minimizing total completion time , total late work , and maximal tardiness which is an NP-hard problem. In the theoretical part of the present work, the mathematical formula for the examined problem will be presented, and a sub-problem of the original problem of minimizing the multi-objective functions is introduced. Also, then the importance regarding the dominance rule (DR) that could be applied to the problem to improve good solutions will be shown. While in the practical part, two
... Show MoreIn this paper, one of the Machine Scheduling Problems is studied, which is the problem of scheduling a number of products (n-jobs) on one (single) machine with the multi-criteria objective function. These functions are (completion time, the tardiness, the earliness, and the late work) which formulated as . The branch and bound (BAB) method are used as the main method for solving the problem, where four upper bounds and one lower bound are proposed and a number of dominance rules are considered to reduce the number of branches in the search tree. The genetic algorithm (GA) and the particle swarm optimization (PSO) are used to obtain two of the upper bounds. The computational results are calculated by coding (progr
... Show MoreIn project management process, the objective is to define and develop a model for planning, scheduling, controlling, and monitoring different activities of a particular project. Time scheduling plays an important role in successful implementation of various activities and general outcome of project. In practice, various factors cause projects to suffer from time delay in accomplishing the activities. One important reason is imprecise knowledge about time duration of activities. This study addresses the problem of project scheduling in uncertain resource environments, which are defined by uncertain activity durations. The study presents a solution of the levelling and allocation problems for projects that have some uncertain ac
... Show MoreIn this paper we investigate the use of two types of local search methods (LSM), the Simulated Annealing (SA) and Particle Swarm Optimization (PSO), to solve the problems ( ) and . The results of the two LSMs are compared with the Branch and Bound method and good heuristic methods. This work shows the good performance of SA and PSO compared with the exact and heuristic methods in terms of best solutions and CPU time.
In this paper, two of the local search algorithms are used (genetic algorithm and particle swarm optimization), in scheduling number of products (n jobs) on a single machine to minimize a multi-objective function which is denoted as (total completion time, total tardiness, total earliness and the total late work). A branch and bound (BAB) method is used for comparing the results for (n) jobs starting from (5-18). The results show that the two algorithms have found the optimal and near optimal solutions in an appropriate times.
In this research, we propose to use two local search methods (LSM's); Particle Swarm Optimization (PSO) and the Bees Algorithm (BA) to solve Multi-Criteria Travelling Salesman Problem (MCTSP) to obtain the best efficient solutions. The generating process of the population of the proposed LSM's may be randomly obtained or by adding some initial solutions obtained from some efficient heuristic methods. The obtained solutions of the PSO and BA are compared with the solutions of the exact methods (complete enumeration and branch and bound methods) and some heuristic methods. The results proved the efficiency of PSO and BA methods for a large number of nodes ( ). The proposed LSM's give the best efficient solutions for the MCTSP for
... Show MoreIn this paper, we studied the scheduling of jobs on a single machine. Each of n jobs is to be processed without interruption and becomes available for processing at time zero. The objective is to find a processing order of the jobs, minimizing the sum of maximum earliness and maximum tardiness. This problem is to minimize the earliness and tardiness values, so this model is equivalent to the just-in-time production system. Our lower bound depended on the decomposition of the problem into two subprograms. We presented a novel heuristic approach to find a near-optimal solution for the problem. This approach depends on finding efficient solutions for two problems. The first problem is minimizing total completi
... Show MoreDuring the last few decades, many academic and professional groups gave attention to adopting the multi-criteria decision-making methods in a variety of contexts for decision-making that are given to the diversity and sophistication of their selections. Five different classification methods are tested and assessed in this paper. Each has its own set of five attribute selection approaches. By using the multi-criteria decision-making procedures, these data can be used to rate options. Technique for order of preference by similarity to ideal solution (TOPSIS) is designed utilizing a modified fuzzy analytic hierarchy process (MFAHP) to compute the weight alternatives for TOPSIS in order to obtain the confidence value of each class
... Show More