The presented study investigated the scheduling regarding jobs on a single machine. Each job will be processed with no interruptions and becomes available for the processing at time 0. The aim is finding a processing order with regard to jobs, minimizing total completion time , total late work , and maximal tardiness which is an NP-hard problem. In the theoretical part of the present work, the mathematical formula for the examined problem will be presented, and a sub-problem of the original problem of minimizing the multi-objective functions is introduced. Also, then the importance regarding the dominance rule (DR) that could be applied to the problem to improve good solutions will be shown. While in the practical part, two exact methods are important; a Branch and Bound algorithm (BAB) and a complete enumeration (CEM) method are applied to solve the three proposed MSP criteria by finding a set of efficient solutions. The experimental results showed that CEM can solve problems for up to jobs. Two approaches of the BAB method were applied: the first approach was BAB without dominance rule (DR), and the BAB method used dominance rules to reduce the number of sequences that need to be considered. Also, this method can solve problems for up to , and the second approach BAB with dominance rule (DR), can solve problems for up to jobs in a reasonable time to find efficient solutions to this problem. In addition, to find good approximate solutions, two heuristic methods for solving the problem are proposed, the first heuristic method can solve up to jobs, while the second heuristic method can solve up to jobs. Practical experiments prove the good performance regarding the two suggested approaches for the original problem. While for a sub-problem the experimental results showed that CEM can solve problems for up to jobs, the BAB without dominance rule (DR) can solve problems for up to , and the second approach BAB with dominance rule (DR), can solve problems for up to jobs in a reasonable time to find efficient solutions to this problem. Finally, the heuristic method can solve up to jobs. Arithmetic results are calculated by coding (programming) algorithms using (MATLAB 2019a)
Within this research, The problem of scheduling jobs on a single machine is the subject of study to minimize the multi-criteria and multi-objective functions. The first problem, minimizing the multi-criteria, which include Total Completion Time, Total Late Work, and Maximum Earliness Time (∑𝐶𝑗, ∑𝑉𝑗, 𝐸𝑚𝑎𝑥), and the second problem, minimizing the multi-objective functions ∑𝐶𝑗 + ∑𝑉𝑗 +𝐸𝑚𝑎𝑥 are the problems at hand in this paper. In this study, a mathematical model is created to address the research problems, and some rules provide efficient (optimal) solutions to these problems. It has also been proven that each optimal solution for ∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥 is an effic
... Show MoreMachine scheduling problems (MSP) are considered as one of the most important classes of combinatorial optimization problems. In this paper, the problem of job scheduling on a single machine is studied to minimize the multiobjective and multiobjective objective function. This objective function is: total completion time, total lead time and maximum tardiness time, respectively, which are formulated as are formulated. In this study, a mathematical model is created to solve the research problem. This problem can be divided into several sub-problems and simple algorithms have been found to find the solutions to these sub-problems and compare them with efficient solutions. For this problem, some rules that provide efficient solutio
... Show MoreIn this paper we investigate the use of two types of local search methods (LSM), the Simulated Annealing (SA) and Particle Swarm Optimization (PSO), to solve the problems ( ) and . The results of the two LSMs are compared with the Branch and Bound method and good heuristic methods. This work shows the good performance of SA and PSO compared with the exact and heuristic methods in terms of best solutions and CPU time.
In this paper, the bi-criteria machine scheduling problems (BMSP) are solved, where the discussed problem is represented by the sum of completion and the sum of late work times simultaneously. In order to solve the suggested BMSP, some metaheurisitc methods are suggested which produce good results. The suggested local search methods are simulated annulling and bees algorithm. The results of the new metaheurisitc methods are compared with the complete enumeration method, which is considered an exact method, then compared results of the heuristics with each other to obtain the most efficient method.
In this paper, the problem of scheduling jobs on one machine for a variety multicriteria
are considered to minimize total completion time and maximum late work. A set of n
independent jobs has to be scheduled on a single machine that is continuously available from
time zero onwards and that can handle no more than one job at a time. Job i,(i=1,…,n)
requires processing during a given positive uninterrupted time pi, and its due date d
i.
For the bicriteria problems, some algorithms are proposed to find efficient (Pareto)
solutions for simultaneous case. Also for the multicriteria problem we proposed general
algorithms which gives efficient solutions within the efficient range
In this paper, one of the Machine Scheduling Problems is studied, which is the problem of scheduling a number of products (n-jobs) on one (single) machine with the multi-criteria objective function. These functions are (completion time, the tardiness, the earliness, and the late work) which formulated as . The branch and bound (BAB) method are used as the main method for solving the problem, where four upper bounds and one lower bound are proposed and a number of dominance rules are considered to reduce the number of branches in the search tree. The genetic algorithm (GA) and the particle swarm optimization (PSO) are used to obtain two of the upper bounds. The computational results are calculated by coding (progr
... Show MoreIn this paper, we investigate some methods to solve one of the multi-criteria machine scheduling problems. The discussed problem is the total completion time and the total earliness jobs To solve this problem, some heuristic methods are proposed which provided good results. The Branch and Bound (BAB) method is applied with new suggested upper and lower bounds to solve the discussed problem, which produced exact results for in a reasonable time.
This paper proposes a new algorithm (F2SE) and algorithm (Alg(n – 1)) for solving the
two-machine flow shop problem with the objective of minimizing total earliness. This
complexity result leads us to use an enumeration solution approach for the algorithm (F2SE)
and (DM) is more effective than algorithm Alg( n – 1) to obtain approximate solution.
Scheduling problems have been treated as single criterion problems until recently. Many of these problems are computationally hard to solve three as single criterion problems. However, there is a need to consider multiple criteria in a real life scheduling problem in general. In this paper, we study the problem of scheduling jobs on a single machine to minimize total tardiness subject to maximum earliness or tardiness for each job. And we give algorithm (ETST) to solve the first problem (p1) and algorithm (TEST) to solve the second problem (p2) to find an efficient solution.