The presented study investigated the scheduling regarding jobs on a single machine. Each job will be processed with no interruptions and becomes available for the processing at time 0. The aim is finding a processing order with regard to jobs, minimizing total completion time , total late work , and maximal tardiness which is an NP-hard problem. In the theoretical part of the present work, the mathematical formula for the examined problem will be presented, and a sub-problem of the original problem of minimizing the multi-objective functions is introduced. Also, then the importance regarding the dominance rule (DR) that could be applied to the problem to improve good solutions will be shown. While in the practical part, two exact methods are important; a Branch and Bound algorithm (BAB) and a complete enumeration (CEM) method are applied to solve the three proposed MSP criteria by finding a set of efficient solutions. The experimental results showed that CEM can solve problems for up to jobs. Two approaches of the BAB method were applied: the first approach was BAB without dominance rule (DR), and the BAB method used dominance rules to reduce the number of sequences that need to be considered. Also, this method can solve problems for up to , and the second approach BAB with dominance rule (DR), can solve problems for up to jobs in a reasonable time to find efficient solutions to this problem. In addition, to find good approximate solutions, two heuristic methods for solving the problem are proposed, the first heuristic method can solve up to jobs, while the second heuristic method can solve up to jobs. Practical experiments prove the good performance regarding the two suggested approaches for the original problem. While for a sub-problem the experimental results showed that CEM can solve problems for up to jobs, the BAB without dominance rule (DR) can solve problems for up to , and the second approach BAB with dominance rule (DR), can solve problems for up to jobs in a reasonable time to find efficient solutions to this problem. Finally, the heuristic method can solve up to jobs. Arithmetic results are calculated by coding (programming) algorithms using (MATLAB 2019a)
Real life scheduling problems require the decision maker to consider a number of criteria before arriving at any decision. In this paper, we consider the multi-criteria scheduling problem of n jobs on single machine to minimize a function of five criteria denoted by total completion times (∑), total tardiness (∑), total earliness (∑), maximum tardiness () and maximum earliness (). The single machine total tardiness problem and total earliness problem are already NP-hard, so the considered problem is strongly NP-hard.
We apply two local search algorithms (LSAs) descent method (DM) and simulated annealing method (SM) for the 1// (∑∑∑
... Show MoreIn this paper, the main work is to minimize a function of three cost criteria for scheduling n jobs on a single machine. We proposed algorithms to solve the single machine scheduling multiobjective problem. In this problem, we consider minimizing the total completion times, total tardiness and maximum tardiness criteria. First a branch and bound (BAB) algorithm is applied for the 1//∑Ci+∑Ti+Tmax problem. Second we compare two multiobjective algorithms one of them based on (BAB) algorithm to find the set of efficient (non dominated) solutions for the 1//(∑Ci ,∑Ti ,Tmax) problem. The computational results show that the algorithm based on (BAB) algorithm is better than the other one for generated the total number of
... Show MoreIn this paper, two of the local search algorithms are used (genetic algorithm and particle swarm optimization), in scheduling number of products (n jobs) on a single machine to minimize a multi-objective function which is denoted as (total completion time, total tardiness, total earliness and the total late work). A branch and bound (BAB) method is used for comparing the results for (n) jobs starting from (5-18). The results show that the two algorithms have found the optimal and near optimal solutions in an appropriate times.
In this paper, we present a Branch and Bound (B&B) algorithm of scheduling (n) jobs on a single machine to minimize the sum total completion time, total tardiness, total earliness, number of tardy jobs and total late work with unequal release dates. We proposed six heuristic methods for account upper bound. Also to obtain lower bound (LB) to this problem we modified a (LB) select from literature, with (Moore algorithm and Lawler's algorithm). And some dominance rules were suggested. Also, two special cases were derived. Computational experience showed the proposed (B&B) algorithm was effective in solving problems with up to (16) jobs, also the upper bounds and the lower bound were effective in restr
... Show MoreWhile analytical solutions to Quadratic Assignment Problems (QAP) have indeed been since a long time, the expanding use of Evolutionary Algorithms (EAs) for similar issues gives a framework for dealing with QAP with an extraordinarily broad scope. The study's key contribution is that it normalizes all of the criteria into a single scale, regardless of their measurement systems or the requirements of minimum or maximum, relieving the researchers of the exhaustively quantifying the quality criteria. A tabu search algorithm for quadratic assignment problems (TSQAP) is proposed, which combines the limitations of tabu search with a discrete assignment problem. The effectiveness of the proposed technique has been compared to well-established a
... Show MoreThis paper investigates some exact and local search methods to solve the traveling salesman problem. The Branch and Bound technique (BABT) is proposed, as an exact method, with two models. In addition, the classical Genetic Algorithm (GA) and Simulated Annealing (SA) are discussed and applied as local search methods. To improve the performance of GA we propose two kinds of improvements for GA; the first is called improved GA (IGA) and the second is Hybrid GA (HGA).
The IGA gives best results than GA and SA, while the HGA is the best local search method for all within a reasonable time for 5 ≤ n ≤ 2000, where n is the number of visited cities. An effective method of reducing the size of the TSP matrix was proposed with
... Show MoreIn this paper, we studied the scheduling of jobs on a single machine. Each of n jobs is to be processed without interruption and becomes available for processing at time zero. The objective is to find a processing order of the jobs, minimizing the sum of maximum earliness and maximum tardiness. This problem is to minimize the earliness and tardiness values, so this model is equivalent to the just-in-time production system. Our lower bound depended on the decomposition of the problem into two subprograms. We presented a novel heuristic approach to find a near-optimal solution for the problem. This approach depends on finding efficient solutions for two problems. The first problem is minimizing total completi
... Show MoreMeerkat Clan Algorithm (MCA) that is a swarm intelligence algorithm resulting from watchful observation of the Meerkat (Suricata suricatta) in the Kalahari Desert in southern Africa. Meerkat has some behaviour. Sentry, foraging, and baby-sitter are the behaviour used to build this algorithm through dividing the solution sets into two sets, all the operations are performed on the foraging set. The sentry presents the best solution. The Flexible Job Shop Scheduling Problem (FJSSP) is vital in the two fields of generation administration and combinatorial advancement. In any case, it is very hard to accomplish an ideal answer for this problem with customary streamlining approaches attributable to the high computational unpredictability. Most
... Show MoreIn this paper we will investigate some Heuristic methods to solve travelling salesman problem. The discussed methods are Minimizing Distance Method (MDM), Branch and Bound Method (BABM), Tree Type Heuristic Method (TTHM) and Greedy Method (GRM).
The weak points of MDM are manipulated in this paper. The Improved MDM (IMDM) gives better results than classical MDM, and other discussed methods, while the GRM gives best time for 5≤ n ≤500, where n is the number of visited cities.