Preferred Language
Articles
/
TRbktIcBVTCNdQwCaF1t
Three iterative methods for solving Jeffery-Hamel flow problem

In this article, the nonlinear problem of Jeffery-Hamel flow has been solved analytically and numerically by using reliable iterative and numerical methods. The approximate solutions obtained by using the Daftardar-Jafari method namely (DJM), Temimi-Ansari method namely (TAM) and Banach contraction method namely (BCM). The obtained solutions are discussed numerically, in comparison with other numerical solutions obtained from the fourth order Runge-Kutta (RK4), Euler and previous analytic methods available in literature. In addition, the convergence of the proposed methods is given based on the Banach fixed point theorem. The results reveal that the presented methods are reliable, effective and applicable to solve other nonlinear problems. Our computational works have been done by using the computer algebra system MATHEMATICA®10 to evaluate the terms in the iterative processes.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
Effective Computational Methods for Solving the Jeffery-Hamel Flow Problem

In this paper, the effective computational method (ECM) based on the standard monomial polynomial has been implemented to solve the nonlinear Jeffery-Hamel flow problem. Moreover, novel effective computational methods have been developed and suggested in this study by suitable base functions, namely Chebyshev, Bernstein, Legendre, and Hermite polynomials. The utilization of the base functions converts the nonlinear problem to a nonlinear algebraic system of equations, which is then resolved using the Mathematica®12 program. The development of effective computational methods (D-ECM) has been applied to solve the nonlinear Jeffery-Hamel flow problem, then a comparison between the methods has been shown. Furthermore, the maximum

... Show More
Scopus (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Applied And Computational Mathematics
Reliable computational methods for solving Jeffery-Hamel flow problem based on polynomial function spaces

In this paper reliable computational methods (RCMs) based on the monomial stan-dard polynomials have been executed to solve the problem of Jeffery-Hamel flow (JHF). In addition, convenient base functions, namely Bernoulli, Euler and Laguerre polynomials, have been used to enhance the reliability of the computational methods. Using such functions turns the problem into a set of solvable nonlinear algebraic system that MathematicaⓇ12 can solve. The JHF problem has been solved with the help of Improved Reliable Computational Methods (I-RCMs), and a review of the methods has been given. Also, published facts are used to make comparisons. As further evidence of the accuracy and dependability of the proposed methods, the maximum error remainder

... Show More
Scopus Clarivate Crossref
View Publication
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Computational Analysis of Metallic- Nonmetallic Nanoparticle on Jeffery Hamel Nanofluid Flow Problem

     In this article, we investigate the heat transfer on nanoparticles Jeffrey Hamel flow problem between two rigid plane walls. Water is used as a main fluid using four different types of nanoparticles, namely aluminum, cuprous, titanium, and silver. The results of nonlinear transformational equations with boundary conditions are solved analytically and numerically. The perturbation iteration scheme (PIS) is used for the analytic solution, while for determining the numerical results, the Rang-Kutta of the four-order scheme (RK4S) is used. The effects on the behavior of non-dimensional velocity and temperature distributions are presented in the form of tables and graphs for different values ​​of emerging physical parameters (Rey

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Three Weighted Residuals Methods for Solving the Nonlinear Thin Film Flow Problem
Abstract<p>In this paper, the methods of weighted residuals: Collocation Method (CM), Least Squares Method (LSM) and Galerkin Method (GM) are used to solve the thin film flow (TFF) equation. The weighted residual methods were implemented to get an approximate solution to the TFF equation. The accuracy of the obtained results is checked by calculating the maximum error remainder functions (MER). Moreover, the outcomes were examined in comparison with the 4<sup>th</sup>-order Runge-Kutta method (RK4) and good agreements have been achieved. All the evaluations have been successfully implemented by using the computer system Mathematica®10.</p>
Crossref (1)
Crossref
View Publication
Publication Date
Sat Feb 27 2021
Journal Name
Iraqi Journal Of Science
Efficient Iterative Methods for Solving the SIR Epidemic Model

In this article, the numerical and approximate solutions for the nonlinear differential equation systems, represented by the epidemic SIR model, are determined. The effective iterative methods, namely the Daftardar-Jafari method (DJM), Temimi-Ansari method (TAM), and the Banach contraction method (BCM), are used to obtain the approximate solutions. The results showed many advantages over other iterative methods, such as Adomian decomposition method (ADM) and the variation iteration method (VIM) which were applied to the non-linear terms of the Adomian polynomial and the Lagrange multiplier, respectively. Furthermore, numerical solutions were obtained by using the fourth-orde Runge-Kutta (RK4), where the maximum remaining errors showed th

... Show More
Scopus (9)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Journal Of King Saud University - Science
Crossref (12)
Crossref
View Publication
Publication Date
Sun Sep 06 2015
Journal Name
Baghdad Science Journal
A New Three Step Iterative Method without Second Derivative for Solving Nonlinear Equations

In this paper , an efficient new procedure is proposed to modify third –order iterative method obtained by Rostom and Fuad [Saeed. R. K. and Khthr. F.W. New third –order iterative method for solving nonlinear equations. J. Appl. Sci .7(2011): 916-921] , using three steps based on Newton equation , finite difference method and linear interpolation. Analysis of convergence is given to show the efficiency and the performance of the new method for solving nonlinear equations. The efficiency of the new method is demonstrated by numerical examples.

Crossref
View Publication Preview PDF
Publication Date
Sun Mar 01 2020
Journal Name
Gazi University Journal Of Science
Crossref (6)
Crossref
View Publication
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Semi-Analytical Assessment of Magneto-Hydrodynamic Nano-Fluid Flow Jeffrey- Hamel Problem

In this paper, analyzing the non-dimensional Magnesium-hydrodynamics problem Using nanoparticles in Jeffrey-Hamel flow (JHF) has been studied. The fundamental equations for this issue are reduced to a three-order ordinary differential equation. The current project investigated the effect of the angles between the plates, Reynolds number, nanoparticles volume fraction parameter, and magnetic number on the velocity distribution by using analytical technique known as a perturbation iteration scheme (PIS). The effect of these parameters is similar in the converging and diverging channels except magnetic number that it is different in the divergent channel. Furthermore, the resulting solutions with good convergence and high accuracy for the d

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Apr 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Galerkin-Implicit Methods for Solving Nonlinear Hyperbolic Boundary Value Problem

This paper is concerned with finding the approximation solution (APPS) of a certain type of nonlinear hyperbolic boundary value problem (NOLHYBVP).  The given BVP is written in its discrete (DI) weak form (WEF), and is proved that  it has a unique APPS, which is obtained via the mixed Galerkin finite element method (GFE) with implicit method (MGFEIM) that reduces the problem to solve the Galerkin nonlinear algebraic system  (GNAS).  In this part, the predictor and the corrector technique (PT and CT) are proved convergent and are used to transform the obtained GNAS to  linear (GLAS ), then the GLAS is solved using the Cholesky method (ChMe). The stability and the convergence of the method are studied. The results

... Show More
Crossref
View Publication Preview PDF