Preferred Language
Articles
/
jih-1817
Local Search Algorithms for Multi-criteria Single Machine Scheduling Problem
...Show More Authors

   Real life scheduling problems require the decision maker to consider a number of criteria before arriving at any decision. In this paper, we consider the multi-criteria scheduling problem of n jobs on single machine to minimize a function of five criteria denoted by total completion times (∑), total tardiness (∑), total earliness (∑), maximum tardiness () and maximum earliness (). The single machine total tardiness problem and total earliness problem are already NP-hard, so the considered problem is strongly NP-hard.

We apply two local search algorithms (LSAs) descent method (DM) and simulated annealing method (SM) for the 1// (∑∑∑) problem (SP) to find near optimal solutions. The local search methods are used to speed up the process of finding a good enough solution, where an exhaustive search is impractical for the exact solution. The two heuristic (DM and SM) were compared with the branch and bound (BAB) algorithm in order to evaluate effectiveness of the solution methods.

            Some experimental results are presented to show the applicability of the (BAB) algorithm and (LSAs). With a reasonable time, (LSAs) may solve the problem (SP) up to 5000 jobs.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Aug 26 2019
Journal Name
Iraqi Journal Of Science
Exact Methods for Solving Multi-Objective Problem on Single Machine Scheduling
...Show More Authors

     In this paper, one of the Machine Scheduling Problems is studied, which is the problem of scheduling a number of products (n-jobs) on one (single) machine with the multi-criteria objective function. These functions are (completion time, the tardiness, the earliness, and the late work) which formulated as . The branch and bound (BAB) method are used as the main method for solving the problem, where four upper bounds and one lower bound are proposed and a number of dominance rules are considered to reduce the number of branches in the search tree. The genetic algorithm (GA) and the particle swarm optimization (PSO) are used to obtain two of the upper bounds. The computational results are calculated by coding (progr

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (7)
Scopus Crossref
Publication Date
Sun Oct 30 2022
Journal Name
Iraqi Journal Of Science
The Best Efficient Solutions for Multi-Criteria Travelling Salesman Problem Using Local Search Methods
...Show More Authors

     In this research, we propose to use two local search methods (LSM's); Particle Swarm Optimization (PSO) and the Bees Algorithm (BA) to solve Multi-Criteria Travelling Salesman Problem (MCTSP) to obtain the best efficient solutions. The generating process of the population of the proposed LSM's may be randomly obtained or by adding some initial solutions obtained from some efficient heuristic methods. The obtained solutions of the PSO and BA are compared with the solutions of the exact methods (complete enumeration and branch and bound methods) and some heuristic methods. The results proved the efficiency of PSO and BA methods for a large number of nodes ( ). The proposed LSM's give the best efficient solutions for the MCTSP for

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Fri Aug 28 2020
Journal Name
Iraqi Journal Of Science
Using Heuristic and Branch and Bound Methods to Solve a Multi-Criteria Machine Scheduling Problem
...Show More Authors

In this paper, we investigate some methods to solve one of the multi-criteria machine scheduling problems. The discussed problem is the total completion time and the total earliness jobs  To solve this problem, some heuristic methods are proposed which provided good results. The Branch and Bound (BAB) method is applied with new suggested upper and lower bounds to solve the discussed problem, which produced exact results for  in a reasonable time.

View Publication Preview PDF
Scopus (10)
Crossref (3)
Scopus Crossref
Publication Date
Mon Jan 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Genetic Algorithm and Particle Swarm Optimization Techniques for Solving Multi-Objectives on Single Machine Scheduling Problem
...Show More Authors

In this paper, two of the local search algorithms are used (genetic algorithm and particle swarm optimization), in scheduling number of products (n jobs) on a single machine to minimize a multi-objective function which is denoted as  (total completion time, total tardiness, total earliness and the total late work). A branch and bound (BAB) method is used for comparing the results for (n) jobs starting from (5-18). The results show that the two algorithms have found the optimal and near optimal solutions in an appropriate times.

View Publication Preview PDF
Crossref
Publication Date
Sun May 17 2020
Journal Name
Iraqi Journal Of Science
Minimizing the Total Completion Time and Total Earliness Time Functions for a Machine Scheduling Problem Using Local Search Methods
...Show More Authors

In this paper we investigate the use of two types of local search methods (LSM), the Simulated Annealing (SA) and Particle Swarm Optimization (PSO), to solve the problems ( ) and . The results of the two LSMs are compared with the Branch and Bound method and good heuristic methods. This work shows the good performance of SA and PSO compared with the exact and heuristic methods in terms of best solutions and CPU time.

View Publication Preview PDF
Scopus (6)
Scopus Crossref
Publication Date
Mon Jun 10 2024
Journal Name
Iraqi Journal For Computer Science And Mathematics
Solving tri-criteria: total completion time, total late work, and maximum earliness by using exact, and heuristic methods on single machine scheduling problem
...Show More Authors

The presented study investigated the scheduling regarding  jobs on a single machine. Each  job will be processed with no interruptions and becomes available for the processing at time 0. The aim is finding a processing order with regard to jobs, minimizing total completion time , total late work , and maximal tardiness  which is an NP-hard problem. In the theoretical part of the present work, the mathematical formula for the examined problem will be presented, and a sub-problem of the original problem of minimizing the multi-objective functions  is introduced. Also, then the importance regarding the dominance rule (DR) that could be applied to the problem to improve good solutions will be shown. While in the practical part, two

... Show More
View Publication
Scopus Crossref
Publication Date
Thu May 04 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Approximate Solution for Two Machine Flow Shop Scheduling Problem to Minimize the Total Earliness
...Show More Authors

This paper proposes a new algorithm (F2SE) and algorithm (Alg(n – 1)) for solving the
two-machine flow shop problem with the objective of minimizing total earliness. This
complexity result leads us to use an enumeration solution approach for the algorithm (F2SE)
and (DM) is more effective than algorithm Alg( n – 1) to obtain approximate solution.

View Publication Preview PDF
Publication Date
Fri Apr 26 2024
Journal Name
Mathematical Modelling Of Engineering Problems
Solving Tri-criteria: Total Completion Time, Total Earliness, and Maximum Tardiness Using Exact and Heuristic Methods on Single-Machine Scheduling Problems
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Wed Nov 01 2017
Journal Name
Journal Of Computational And Theoretical Nanoscience
Solution for Multi-Objective Optimisation Master Production Scheduling Problems Based on Swarm Intelligence Algorithms
...Show More Authors

The emphasis of Master Production Scheduling (MPS) or tactic planning is on time and spatial disintegration of the cumulative planning targets and forecasts, along with the provision and forecast of the required resources. This procedure eventually becomes considerably difficult and slow as the number of resources, products and periods considered increases. A number of studies have been carried out to understand these impediments and formulate algorithms to optimise the production planning problem, or more specifically the master production scheduling (MPS) problem. These algorithms include an Evolutionary Algorithm called Genetic Algorithm, a Swarm Intelligence methodology called Gravitational Search Algorithm (GSA), Bat Algorithm (BAT), T

... Show More
View Publication Preview PDF
Scopus (12)
Crossref (10)
Scopus Crossref
Publication Date
Sat Jan 20 2024
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solving the Multi-criteria, Total Completion Time, Total Earliness Time, and Maximum Tardiness Problem
...Show More Authors

Machine scheduling problems (MSP) are     considered as one of the most important classes of combinatorial optimization problems. In this paper, the problem of job scheduling on a single machine is studied to minimize the multiobjective and multiobjective objective function. This objective function is: total completion time, total lead time and maximum tardiness time, respectively, which are formulated as  are formulated. In this study, a mathematical model is created to solve the research problem. This problem can be divided into several sub-problems and simple algorithms have been found to find the solutions to these sub-problems and compare them with efficient solutions. For this problem, some rules that provide efficient solutio

... Show More
View Publication Preview PDF
Crossref