Preferred Language
Articles
/
ijs-2087
Minimizing the Total Completion Time and Total Earliness Time Functions for a Machine Scheduling Problem Using Local Search Methods

In this paper we investigate the use of two types of local search methods (LSM), the Simulated Annealing (SA) and Particle Swarm Optimization (PSO), to solve the problems ( ) and . The results of the two LSMs are compared with the Branch and Bound method and good heuristic methods. This work shows the good performance of SA and PSO compared with the exact and heuristic methods in terms of best solutions and CPU time.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jun 10 2024
Journal Name
Iraqi Journal For Computer Science And Mathematics
Solving tri-criteria: total completion time, total late work, and maximum earliness by using exact, and heuristic methods on single machine scheduling problem

The presented study investigated the scheduling regarding  jobs on a single machine. Each  job will be processed with no interruptions and becomes available for the processing at time 0. The aim is finding a processing order with regard to jobs, minimizing total completion time , total late work , and maximal tardiness  which is an NP-hard problem. In the theoretical part of the present work, the mathematical formula for the examined problem will be presented, and a sub-problem of the original problem of minimizing the multi-objective functions  is introduced. Also, then the importance regarding the dominance rule (DR) that could be applied to the problem to improve good solutions will be shown. While in the practical part, two

... Show More
Scopus Crossref
View Publication
Publication Date
Sat Jan 20 2024
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solving the Multi-criteria, Total Completion Time, Total Earliness Time, and Maximum Tardiness Problem

Machine scheduling problems (MSP) are     considered as one of the most important classes of combinatorial optimization problems. In this paper, the problem of job scheduling on a single machine is studied to minimize the multiobjective and multiobjective objective function. This objective function is: total completion time, total lead time and maximum tardiness time, respectively, which are formulated as  are formulated. In this study, a mathematical model is created to solve the research problem. This problem can be divided into several sub-problems and simple algorithms have been found to find the solutions to these sub-problems and compare them with efficient solutions. For this problem, some rules that provide efficient solutio

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Apr 26 2024
Journal Name
Mathematical Modelling Of Engineering Problems
Scopus Crossref
View Publication
Publication Date
Mon May 01 2023
Journal Name
Periodicals Of Engineering And Natural Sciences
Solving the multi-criteria: total completion time, total late work, and maximum earliness problem

Within this research, The problem of scheduling jobs on a single machine is the subject of study to minimize the multi-criteria and multi-objective functions. The first problem, minimizing the multi-criteria, which include Total Completion Time, Total Late Work, and Maximum Earliness Time (∑𝐶𝑗, ∑𝑉𝑗, 𝐸𝑚𝑎𝑥), and the second problem, minimizing the multi-objective functions ∑𝐶𝑗 + ∑𝑉𝑗 +𝐸𝑚𝑎𝑥 are the problems at hand in this paper. In this study, a mathematical model is created to address the research problems, and some rules provide efficient (optimal) solutions to these problems. It has also been proven that each optimal solution for ∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥 is an effic

... Show More
Scopus (3)
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Thu May 04 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Minimizing total Completion Time and Maximum late Work Simultaneously

In this paper, the problem of scheduling jobs on one machine for a variety multicriteria
are considered to minimize total completion time and maximum late work. A set of n
independent jobs has to be scheduled on a single machine that is continuously available from
time zero onwards and that can handle no more than one job at a time. Job i,(i=1,…,n)
requires processing during a given positive uninterrupted time pi, and its due date d
i.
For the bicriteria problems, some algorithms are proposed to find efficient (Pareto)
solutions for simultaneous case. Also for the multicriteria problem we proposed general
algorithms which gives efficient solutions within the efficient range

View Publication Preview PDF
Publication Date
Thu May 04 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Approximate Solution for Two Machine Flow Shop Scheduling Problem to Minimize the Total Earliness

This paper proposes a new algorithm (F2SE) and algorithm (Alg(n – 1)) for solving the
two-machine flow shop problem with the objective of minimizing total earliness. This
complexity result leads us to use an enumeration solution approach for the algorithm (F2SE)
and (DM) is more effective than algorithm Alg( n – 1) to obtain approximate solution.

View Publication Preview PDF
Publication Date
Sun Jul 30 2023
Journal Name
Iraqi Journal Of Science
Exact and Near Pareto Optimal Solutions for Total Completion Time and Total Late Work Problem

     In this paper, the bi-criteria machine scheduling problems (BMSP) are solved, where the discussed problem is represented by the sum of completion and the sum of late work times  simultaneously. In order to solve the suggested BMSP, some metaheurisitc methods are suggested which produce good results. The suggested local search methods are simulated annulling and bees algorithm. The results of the new metaheurisitc methods are compared with the complete enumeration method, which is considered an exact method, then compared results of the heuristics with each other to obtain the most efficient method.

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Local Search Algorithms for Multi-criteria Single Machine Scheduling Problem

   Real life scheduling problems require the decision maker to consider a number of criteria before arriving at any decision. In this paper, we consider the multi-criteria scheduling problem of n jobs on single machine to minimize a function of five criteria denoted by total completion times (∑), total tardiness (∑), total earliness (∑), maximum tardiness () and maximum earliness (). The single machine total tardiness problem and total earliness problem are already NP-hard, so the considered problem is strongly NP-hard.

We apply two local search algorithms (LSAs) descent method (DM) and simulated annealing method (SM) for the 1// (∑∑∑

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Sun Mar 19 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Minimizing the Total Completion Times, the Total Tardiness and the Maximum Tardiness

In this paper, the main work is to minimize a function of three cost criteria for scheduling n jobs on a single machine. We proposed algorithms to solve the single machine scheduling multiobjective problem. In this problem, we consider minimizing the total completion times, total tardiness and maximum tardiness criteria. First a branch and bound (BAB) algorithm is applied for the 1//∑Ci+∑Ti+Tmax problem. Second we compare two multiobjective algorithms one of them based on (BAB) algorithm to find the set of efficient (non dominated) solutions for the 1//(∑Ci ,∑Ti ,Tmax) problem. The computational results show that the algorithm based on (BAB) algorithm is better than the other one for generated the total number of

... Show More
View Publication Preview PDF
Publication Date
Fri Aug 28 2020
Journal Name
Iraqi Journal Of Science
Using Heuristic and Branch and Bound Methods to Solve a Multi-Criteria Machine Scheduling Problem

In this paper, we investigate some methods to solve one of the multi-criteria machine scheduling problems. The discussed problem is the total completion time and the total earliness jobs  To solve this problem, some heuristic methods are proposed which provided good results. The Branch and Bound (BAB) method is applied with new suggested upper and lower bounds to solve the discussed problem, which produced exact results for  in a reasonable time.

Scopus (10)
Crossref (3)
Scopus Crossref
View Publication Preview PDF