In this paper, we studied the scheduling of jobs on a single machine. Each of n jobs is to be processed without interruption and becomes available for processing at time zero. The objective is to find a processing order of the jobs, minimizing the sum of maximum earliness and maximum tardiness. This problem is to minimize the earliness and tardiness values, so this model is equivalent to the just-in-time production system. Our lower bound depended on the decomposition of the problem into two subprograms. We presented a novel heuristic approach to find a near-optimal solution for the problem. This approach depends on finding efficient solutions for two problems. The first problem is minimizing total completion time and maximum tardiness. The second is minimizing total completion time and maximum earliness. We used these efficient solutions to find a near-optimal solution for another problem which is a sum of maximum earliness and maximum tardiness. This means we eliminate the total completion time from the two problems. The algorithm was tested on a set of problems of different n. Computational results demonstrate the efficiency of the proposed method.
There are many researches deals with constructing an efficient solutions for real problem having Multi - objective confronted with each others. In this paper we construct a decision for Multi – objectives based on building a mathematical model formulating a unique objective function by combining the confronted objectives functions. Also we are presented some theories concerning this problem. Areal application problem has been presented to show the efficiency of the performance of our model and the method. Finally we obtained some results by randomly generating some problems.
In this paper, one of the Machine Scheduling Problems is studied, which is the problem of scheduling a number of products (n-jobs) on one (single) machine with the multi-criteria objective function. These functions are (completion time, the tardiness, the earliness, and the late work) which formulated as . The branch and bound (BAB) method are used as the main method for solving the problem, where four upper bounds and one lower bound are proposed and a number of dominance rules are considered to reduce the number of branches in the search tree. The genetic algorithm (GA) and the particle swarm optimization (PSO) are used to obtain two of the upper bounds. The computational results are calculated by coding (progr
... Show MoreIn this paper we present a new method for solving fully fuzzy multi-objective linear programming problems and find the fuzzy optimal solution of it. Numerical examples are provided to illustrate the method.
The emphasis of Master Production Scheduling (MPS) or tactic planning is on time and spatial disintegration of the cumulative planning targets and forecasts, along with the provision and forecast of the required resources. This procedure eventually becomes considerably difficult and slow as the number of resources, products and periods considered increases. A number of studies have been carried out to understand these impediments and formulate algorithms to optimise the production planning problem, or more specifically the master production scheduling (MPS) problem. These algorithms include an Evolutionary Algorithm called Genetic Algorithm, a Swarm Intelligence methodology called Gravitational Search Algorithm (GSA), Bat Algorithm (BAT), T
... Show MoreHuman beings are greatly inspired by nature. Nature has the ability to solve very complex problems in its own distinctive way. The problems around us are becoming more and more complex in the real time and at the same instance our mother nature is guiding us to solve these natural problems. Nature gives some of the logical and effective ways to find solutions to these problems. Nature acts as an optimized source for solving the complex problems. Decomposition is a basic strategy in traditional multi-objective optimization. However, it has not yet been widely used in multi-objective evolutionary optimization.
Although computational strategies for taking care of Multi-objective Optimization Problems (MOPs) h
... Show MoreA hybrid particulate swarm optimization (hybrid) combination of an optimization algorithm of the particle swarm and a variable neighborhood search algorithm is proposed for the multi-objective permutation flow shop scheduling problem (PFSP) with the smallest cumulative completion time and the smallest total flow time. Algorithm for hybrid particulate swarm optimization (HPSO) is applied to maintain a fair combination of centralized search with decentralized search. The Nawaz-Enscore-Ham )NEH) heuristic algorithm in this hybrid algorithm is used to initialize populations in order to improve the efficiency of the initial solution. The method design is based on ascending order (ranked-order-value, ROV), applying the continuous PSO algorithm
... Show MoreIn this paper, we investigate some methods to solve one of the multi-criteria machine scheduling problems. The discussed problem is the total completion time and the total earliness jobs To solve this problem, some heuristic methods are proposed which provided good results. The Branch and Bound (BAB) method is applied with new suggested upper and lower bounds to solve the discussed problem, which produced exact results for in a reasonable time.