In this research, we propose to use two local search methods (LSM's); Particle Swarm Optimization (PSO) and the Bees Algorithm (BA) to solve Multi-Criteria Travelling Salesman Problem (MCTSP) to obtain the best efficient solutions. The generating process of the population of the proposed LSM's may be randomly obtained or by adding some initial solutions obtained from some efficient heuristic methods. The obtained solutions of the PSO and BA are compared with the solutions of the exact methods (complete enumeration and branch and bound methods) and some heuristic methods. The results proved the efficiency of PSO and BA methods for a large number of nodes ( ). The proposed LSM's give the best efficient solutions for the MCTSP for jobs in a reasonable time.
This paper investigates some exact and local search methods to solve the traveling salesman problem. The Branch and Bound technique (BABT) is proposed, as an exact method, with two models. In addition, the classical Genetic Algorithm (GA) and Simulated Annealing (SA) are discussed and applied as local search methods. To improve the performance of GA we propose two kinds of improvements for GA; the first is called improved GA (IGA) and the second is Hybrid GA (HGA).
The IGA gives best results than GA and SA, while the HGA is the best local search method for all within a reasonable time for 5 ≤ n ≤ 2000, where n is the number of visited cities. An effective method of reducing the size of the TSP matrix was proposed with
... Show MoreThis paper presents a hybrid metaheuristic algorithm which is Harmony-Scatter Search (HSS). The HSS provides Scatter Search (SS) with random exploration for search space of problem and more of diversity and intensification for promising solutions. The SS and HSS have been tested on Traveling Salesman Problem. A computational experiment with benchmark instances is reported. The results demonstrate that the HSS algorithm produce better performance than original Scatter Search algorithm. The HSS in the value of average fitness is 27.6% comparing with original SS. In other hand the elapsed time of HSS is larger than the original SS by small value. The developed algorithm has been compared with other algorithms for the same problem, and the r
... Show MoreReal life scheduling problems require the decision maker to consider a number of criteria before arriving at any decision. In this paper, we consider the multi-criteria scheduling problem of n jobs on single machine to minimize a function of five criteria denoted by total completion times (∑), total tardiness (∑), total earliness (∑), maximum tardiness () and maximum earliness (). The single machine total tardiness problem and total earliness problem are already NP-hard, so the considered problem is strongly NP-hard.
We apply two local search algorithms (LSAs) descent method (DM) and simulated annealing method (SM) for the 1// (∑∑∑
... Show MoreThe traveling salesman problem is addressed in this paper by introducing a distributed multi-ant colony algorithm that is implemented on a Raspberry Pi cluster. The implementation of a master and eight workers, each running on Raspberry Pi nodes, is the central component of this novel technique. Each worker is responsible for managing their own colony of ants, while the master coordinates communications among workers’ nodes and assesses the most optimal approach. To put the newly built cluster through its paces, several datasets of traveling salesman problem are used to test the created cluster. The findings of the experiment indicate that a single board computer cluster, which makes use of multi-ant colony algorithm, is a via
... Show MoreIn this paper we will investigate some Heuristic methods to solve travelling salesman problem. The discussed methods are Minimizing Distance Method (MDM), Branch and Bound Method (BABM), Tree Type Heuristic Method (TTHM) and Greedy Method (GRM).
The weak points of MDM are manipulated in this paper. The Improved MDM (IMDM) gives better results than classical MDM, and other discussed methods, while the GRM gives best time for 5≤ n ≤500, where n is the number of visited cities.
Transportation and distribution are the most important elements in the work system for any company, which are of great importance in the success of the chain work. Al-Rabee factory is one of the largest ice cream factories in Iraq and it is considered one of the most productive and diversified factories with products where its products cover most areas of the capital Baghdad, however, it lacks a distribution system based on scientific and mathematical methods to work in the transportation and distribution processes, moreover, these processes need a set of important data that cannot in any way be separated from the reality of fuzziness industrial environment in Iraq, which led to use the fuzzy sets theory to reduce the levels of uncertainty.
... Show MoreIn this paper we investigate the use of two types of local search methods (LSM), the Simulated Annealing (SA) and Particle Swarm Optimization (PSO), to solve the problems ( ) and . The results of the two LSMs are compared with the Branch and Bound method and good heuristic methods. This work shows the good performance of SA and PSO compared with the exact and heuristic methods in terms of best solutions and CPU time.
The main focus of this research is to examine the Travelling Salesman Problem (TSP) and the methods used to solve this problem where this problem is considered as one of the combinatorial optimization problems which met wide publicity and attention from the researches for to it's simple formulation and important applications and engagement to the rest of combinatorial problems , which is based on finding the optimal path through known number of cities where the salesman visits each city only once before returning to the city of departure n this research , the benefits of( FMOLP) algorithm is employed as one of the best methods to solve the (TSP) problem and the application of the algorithm in conjun
... Show MoreIn this paper, we investigate some methods to solve one of the multi-criteria machine scheduling problems. The discussed problem is the total completion time and the total earliness jobs To solve this problem, some heuristic methods are proposed which provided good results. The Branch and Bound (BAB) method is applied with new suggested upper and lower bounds to solve the discussed problem, which produced exact results for in a reasonable time.
The theory of Multi-Criteria Decision Making (MCDM) was introduced in the second half of the twentieth century and aids the decision maker to resolve problems when interacting criteria are involved and need to be evaluated. In this paper, we apply MCDM on the problem of the best drug for rheumatoid arthritis disease. Then, we solve the MCDM problem via -Sugeno measure and the Choquet integral to provide realistic values in the process of selecting the most appropriate drug. The approach confirms the proper interpretation of multi-criteria decision making in the drug ranking for rheumatoid arthritis.