In this thesis, we study the topological structure in graph theory and various related results. Chapter one, contains fundamental concept of topology and basic definitions about near open sets and give an account of uncertainty rough sets theories also, we introduce the concepts of graph theory. Chapter two, deals with main concepts concerning topological structures using mixed degree systems in graph theory, which is M-space by using the mixed degree systems. In addition, the m-derived graphs, m-open graphs, m-closed graphs, m-interior operators, m-closure operators and M-subspace are defined and studied. In chapter three we study supra-approximation spaces using mixed degree systems and primary object in this chapter are two topological spaces, namely o-space and i-space. In chapter four we introduce two new approximation operators using mixed degree systems and comparing of them and we find the accuracy of the second new approximation operator is more thin the first new approximation operator. For reason we study in detail the properties of the second new operator. Finally, in chapter five we introduce new generalization of rough set theory using a finite number of graphs by using the second new approximation operators in the preiow chapter. Several characterizations and properties of these concepts are obtained.
Form the series of generalization of the topic of supra topology is the generalization of separation axioms . In this paper we have been introduced (S * - SS *) regular spaces . Most of the properties of both spaces have been investigated and reinforced with examples . In the last part we presented the notations of supra *- -space ( =0,1) and we studied their relationship with (S * - SS *) regular spaces.
This work aims to introduce and to study a new kind of divisor graph which is called idempotent divisor graph, and it is denoted by . Two non-zero distinct vertices v1 and v2 are adjacent if and only if , for some non-unit idempotent element . We establish some fundamental properties of , as well as it’s connection with . We also study planarity of this graph.
This paper introduces cutpoints and separations in -connected topological spaces, which are constructed by using the union of vertices set and edges set for a connected graph, and studies the relationships between them. Furthermore, it generalizes some new concepts.
In this paper we introduce a new type of functions called the generalized regular
continuous functions .These functions are weaker than regular continuous functions and
stronger than regular generalized continuous functions. Also, we study some
characterizations and basic properties of generalized regular continuous functions .Moreover
we study another types of generalized regular continuous functions and study the relation
among them
The objective of this paper is to define and introduce a new type of nano semi-open set which called nano -open set as a strong form of nano semi-open set which is related to nano closed sets in nano topological spaces. In this paper, we find all forms of the family of nano -open sets in term of upper and lower approximations of sets and we can easily find nano -open sets and they are a gate to more study. Several types of nano open sets are known, so we study relationship between the nano -open sets with the other known types of nano open sets in nano topological spaces. The Operators such as nano -interior and nano -closure are the part of this paper.
This paper aims to define and study new separation axioms based on the b-open sets in topological ordered spaces, namely strong - -ordered spaces ( ). These new separation axioms are lying between strong -ordered spaces and - - spaces ( ). The implications of these new separation axioms among themselves and other existing types are studied, giving several examples and counterexamples. Also, several properties of these spaces are investigated; for example, we show that the property of strong - -ordered spaces ( ) is an inherited property under open subspaces.
In this study, the concept of fuzzy α-topological vector space is introduced by using the concept fuzzy α-open set , some properties of fuzzy α-topological vector spaces are proved .We also show that the space is -space iff every singleton set is fuzzy α- closed .Finally, the convex property and its relation with the interior points are discussed.
We define and study new ideas of fibrewise topological space on D namely fibrewise multi-topological space on D. We also submit the relevance of fibrewise closed and open topological space on D. Also fibrewise multi-locally sliceable and fibrewise multi-locally section able multi-topological space on D. Furthermore, we propose and prove a number of statements about these ideas.
The purpose of this paper is to introduce and study the concepts of fuzzy generalized open sets, fuzzy generalized closed sets, generalized continuous fuzzy proper functions and prove results about these concepts.
A space X is named a πp – normal if for each closed set F and each π – closed set F’ in X with F ∩ F’ = ∅, there are p – open sets U and V of X with U ∩ V = ∅ whereas F ⊆ U and F’ ⊆ V. Our work studies and discusses a new kind of normality in generalized topological spaces. We define ϑπp – normal, ϑ–mildly normal, & ϑ–almost normal, ϑp– normal, & ϑ–mildly p–normal, & ϑ–almost p-normal and ϑπ-normal space, and we discuss some of their properties.