Pure Graph of a Commutative Ring

¹Nermen J.Khalel Narmin.j.khaleel35382@st.tu.edu.iq

²Nabeel E.Arif nabarif@tu.edu.iq

³Tamadher Arif Ibrahiem tamadherai_math@csw.uobaghdad.edu.iq

1,2"Department of Mathematic College of Computer Science and Mathematics ,Tikrit, Tikrit University , Iraq."

³"Department of Mathematic College of Science for women , Bagdad , University of Bagdad, Iraq.

Abstract

 A new definition of a graph called Pure graph of a ring denote *Pur(R*) was presented , where the vertices of the graph represent the elements of *R* such that there is an edge between the two vertices α and β if and only if $\alpha = \alpha \beta$ or $\beta = \beta \alpha$, denoted by $pur(R)$. In this work we studied some new properties of *pur(R)* finally we defined the complement of *pur(R)* and studied some of it is properties .

Keywords: Graph theory, commutative ring.

1- Introduction

There is a a lot of research linking between graph theory and algebraic ring theory. Ali Majidinya et.al. studied Ring in which the annihilator of an ideal is pure [1]. Bhavanari S. etal defined Prime Graph of a Ring [3] Mohammad Habibi etal. They studied clean graph of a ring [7]. Dhiren K.Basnet and Jayanta Bhattacharyya defined nil clean graph of rings [4], Jafari A. and Sahebi S., studied Vonneumann regular graphs associated with rings[6], A graph *G* is defined by an ordered pair $(V(G), E(G))$, where $V(G)$ is a nonempty set whose elements are called vertices and $E(G)$ is a set (may be empty) of unordered pairs of distinct vertices of $V(G)$, the element of $E(G)$ are called edges of the graph G, we denote by $\overline{\alpha}$ and edge between two end vertices α and β [8].

 In this paper we give new definition named Pure graph of ring and denoted by *pur(R)* with some properties of this new graph .

Basic concept :

Definition 1.1:[1] An element *p* in R is called pure element if there exist *q* in R such that *p*=*pq* .

Definition 1.2:[2]Let *H* be a graph, *V*(*G*) the set of vertices of *G* and $S \subseteq V(H)$, the set *S* is said to be a dominating set if the following condition is satisfy; $a \in V(H)$ implies either $a \in S$ or there exists $k \in S$ such that *a* and *k* are adjacent.

Definition 1.3:[8] A cycle graph with n vertices denoted by C_n , obtained by joining the two end vertices of a path graph and then each vertex of a cycle have degree two .

Definition 1.4:[5] The complete tripartite graph $K_{1,1,p}$. It is a graph consisting of *p* triangles sharing a common edge is called triangular book.

Theorem 1.5:[2] A connected graph G is Euler if and only if its edge set can be decomposed into cycles.

2- **Main Result :**

Definition 2.1: let *R* be a ring. A graph $K(V, E)$ where $V(K) = R$ and $E(K) = \frac{1}{\alpha\beta}/\alpha = \alpha\beta$ or $\beta = \beta \alpha$ and $\alpha \neq \beta$ is called Pure graph of *R* and denoted by $pur(R)$

Example :

 $Z_2 = \{0,1\}$

 Ω

 $\mathbf{1}$

 $\overline{2}$

 $\overline{\mathbf{c}}$

Fig 2: $pur(Z_3)$

 Ω

98

 $Z_5 = \{0,1,2,3,4\}$

Fig $4:pur(Z_5)$

 Z_6 ={0,1,2,3,4,5}

Fig 5: $pur(Z_6)$

 $Z_7=[0,1,2,3,4,5,6]$

Fig 6: $pur(Z_7)$

 $Z_8 = \{0, 1, 2, 3, 4, 5, 6, 7\}$

Fig 7: $pur(Z_8)$

Remarks 2.2: Let $Pur(R)$ be Pure graph where $R = Z_n$ then

- 1- *Pur(R)* has no self loops
- 2- Since $0 = 0\mu$ and $\mu = \mu 1$ for all $0 \neq \mu \neq 1 \in R$ there is an edge from 0 and 1 to μ for all $\mu \in V(G) = R$ so degree (0)= degree (1) = $|R| - 1$
- 3- For any two non-zero elements *a,b* inR there are edge one from 0 and 1 to *a* and another edge from 0 and 1 to *b* this show that the graph *pur(R)* is connected graph. $d(0,a) = d(a, 1) = 1$ and $d(a,b) \leq 2$ for any two non-zero elements $a,b \in R$
- 4- If there are two non-zero elements a, b in R such that $a = ab$ or $b = ba$, then the subgraph produced by $\{0,1,a,b\}$ is K_4 graph, note that the graph $Pur(R)$ where $R = Z_6$ as fig 5, Sub graph produced by $\{0,1,2,4\}$ is K_4 .
- 5- If $R = Z_n$ then max $Pur(Z_n) = n-1$ and min $Pur(Z_n) \ge 2$.

Remark 2.3:

1- $v_1 = v_1v_2$ or $v_2 = v_2v_1$ if and only if the distance between v_1 and v_2 equal 1. **Proof:**

Suppose that $v_1 = v_1 v_2$ or $v_2 = v_2 v_1$ and $v_1 \neq v_2 \neq 0$ or 1 then $v_1 v_2 \in E(Pur(R))$ and so by definition of $Pur(R)$ then $d(v_1, v_2) = 1$. Conversely, suppose $d(v_1, v_2) = 1$, if $(v_1=0 \text{ or } v_2=0)$ or $(v_1=1 \text{ or } v_1=1)$ then $v_1 =$ $v_1 v_2$ or $v_2 = v_2 v_1$ if $d(v_1, v_2) = 1$ and $v_1 \neq v_2 \neq 0$ or 1 then $v_1v_2 \in E(Pur(R))$ which implies

 $v_1 = v_1 v_2$ or $v_2 = v_2 v_1$

2- $u_1 \neq u_1 u_2$ or $u_2 \neq u_2 u_1$ if and only if the distance between u_1 and u_2 equal 2. **Proof:**

Let $u_1 \neq u_1 u_2$ or $u_2 \neq u_2 u_1$ then there is no edge between u_1 and u_2 , so the distance between u_1 and u_2 is largest than 1 . since $0 = 0u_1$, $0 = 0u_2$, $\overline{u_1 0}$, $\overline{u_2 0} \in$ $E(Pur(R))$, hence the distance between u_1 and u_2 equal 2.

Conversely, let the distance between u_1 and u_2 equal 2 since $d(u_1, u_2) \neq 1$, there is no edge between u_1 and u_2 so $u_1 \neq u_1 u_2$ or $u_2 \neq u_2 u_1$

Theorem 2.4 : If $R = Z_p$, and $p \ge 3$, p (prime number), then Pur(R) is a triangular book graph.

Proof :

It is clear that 0, 1 adjacent to all remaining vertices in Pur (Z_p) by definition and there is no edge between any other two vertices α and β where (α and $\beta \neq 0$ or α and $\beta \neq 1$) since $\alpha \neq \alpha \beta \mod(p)$ or $\beta \neq \beta \alpha \mod(p)$.

Theorem 2.5: let $R = Z_p$, and $p \ge 3$ (*p* isprime number),then *Pur(R)* has $p - 2$ of cycle C_3 ."

Proof:

By definition of pure graph of a ring it is clear that 0 and 1 adjacent to all ramming vertices then $\forall a \in V(Pur(Z_p))$, $0 \neq a \neq 1$ then we have a cycle of length 3 { 0,1,a}, that is the number of cycle C_3 is $p-2$.

Theorem 2.6: If $R = Z_p$, p is prime number then $Pur(Z_p)$ is Euler graph.

Proof :

By theorem (2.5) the graph $Pur(Z_p)$ that is the set edges can be decomposed into cycles then $Pur(Z_p)$ is Euler graph by theorem (1.5)

Theorem 2.7 : If $R = Z_p$, and $p \ge 3$ (*p* is prime number), then $Pur(R)$ has $\sum_{i=3}^{p} (p - i)$ $_{i=3}^{p}(p-i)$ of C_4

Proof :

Suppose that $0 \neq v_1 \neq 1$ be a vertex in *Pur(R)* then we have (*p*-3) of C₄ start from the vertex v_1 where $p-3$ is the number of ramming vertices, now we take another vertex v_2 it is clear that is the number of ramming vertices is $p-4$ then we have $(p-4)$ of C_4 start from the vertex v_2 Repeat the process for the rest of the vertices that is we have

$$
(p-3) + (p-4) + \dots + 1 = \sum_{i=3}^{p-1} (p-i).
$$

Corollary 2.8: The graph $\text{Pur}(Z_n)$, $n > 3$ not prime number has at least one of K_4 .

Proof :

By definition of *Pur* (R) for any two vertices $0 \neq v_1, v_2 \neq 1$ we have a cycle C4 { $0, v_1, 1, v_2$ and 0 and 1 are adjacent that is if $v_1 = v_1v_2$ or $v_2 = v_2v_1$ then we have K₄ sub graph of Pur(Z_n), since n not prime then there are another vertices so by definition of *Pur*(R) has another K_4 .

3- **Invariants of Pure graph**:

 In this part, we studied some results related to invariants of graph theory. The girth of *Pur*(R) is compute in the following theorem.

3.1 Girth of *Pur* **(***R***)**

 In a graph G, the girth of G is the length of the shortest cycle inG. We have following results on girth of *Pur(R)*.

Theorem 3.1.1 : If $R = Z_n$, and $n \ge 3$, then the Girth of $Pur(R)$ is equal to 3.

Proof :

It is clear that ,Since 0 and 1 adjacent to all remaining vertices in *Pur(R)* and also 0 and 1 are adjacent to other, that is the shortest cycle in $Pur(R)$ is of length 3

3.2 Dominating set of Pure graph :

Let *G* be a graph, a subset $S \subseteq V(G)$ is said to be dominating set for G if for all $x \in V(G)$, $x \in S$ or there exists $y \in S$ such that *x* is adjacent to *y*. Following theorem shows that for a finite commutative ring dominating number is1,where dominating number is the carnality of smallest dominating set.

Theorem 3.2.1 :The dominating number of *Pur* (Z_n) is 1.

Proof :

Since the smallest dominating set in $Pur(Z_n)$ graph is $\{0\}$ and $\{1\}$ because 0 and 1 are adjacent to all vertices in $Pur(Z_n)$ graph then the dominating number is 1.

4- The complement of *pur(R).*

Definition 4.1: let *R* be a ring. A graph $Pur^c(R)$ is said to be the complement of $pur(R)$ where the vertex set is the ring R and the edge set equal to $\sqrt{\alpha\beta}/\alpha \neq \alpha\beta$ or $\beta \neq \beta\alpha$ and $\alpha \neq \beta$ β }.

Example : Consider Z_n (the ring of integers modulo n).

1- Where $n = 2,3,4$ Pur^c(Z_n) is empty graph since, where $n=2$ then $V(Pur(Z_2)) =$ ${0,1}$ and $E(Pur(Z_2)) = {\overline{01}}$ since $01=0$, and hence there no edges in $Pur^c(Z_2)$,also where $n=3$ then $V(Pur(Z_3)) = \{0,1,2\}$ and $E(Pur(Z_3)) = \{\overline{01}, \overline{02}, \overline{12}\}$ since 01=0 ,02=0 , 21=2 , and hence there no edges in $Pur^c(Z_3)$, now if $n=4$ then $V(Pur(Z_4)) = \{0,1,2,3\}$ and $E(Pur(Z_4)) = \{\overline{01}, \overline{02}, \overline{03}, \overline{12}, \overline{13}, \overline{23}\}$ since $01=0$,02=0,03=0, 21=2, 31=3, 23=2 and hence there no edges in $Pur^c(Z_4)$.

2- Where $n = 5$ $Pur^c(Z_5)$ is disconnected graph since $V(Pur(Z_5)) = \{0,1,2,3,4\}$ and $E(Pur(Z_5)) = {\overline{01, 02, 03, 04, 12, 13, 14}}$ since 01=0,02=0,03=0,04=0, 21=2,31=3 and 41=4 and hence the $E(Pur^c(Z_5)) = {\overline{23}, \overline{24}, \overline{34}}$ that is 0 and 1 don't adjacent to any vertex in $Pur^c(Z_5)$ the blew figure show that

Fig 8 : $Pur^c(Z_5)$

Note: the $Pur^c(Z_n)$ is disconnected graph since 0,1 is adjacent to all vertices in $Pur(Z_n)$. then $Pur^c(Z_n)$ has at least three components.

Theorem 4.2: A graph $Pur^c(Z_p)$, *p* is prime number is disconnected graph has three components two isolated vertices 0 and 1 and K_{p-2} complete graph.

Proof :

By theorem 2.4 $Pur(Z_n)$ is triangle book graph and 0,1 adjacent to all vertices, and there is no edge between any two vertices that is 0 and 1 are isolated vertices in $Pur^c(\mathbb{Z}_p)$, now since the rest of the vertices (their number is $p-2$) are not adjacent to each other in Pur (Z_p) they will be adjacent to each other in $Pur^c(\mathbb{Z}_p)$, this means that $Pur^c(\mathbb{Z}_p)$ contains K_{p-2} complete sub graph .

5- Conclusion :

 The definition of pure graph of commutative ring *Pur*(R) was introduced in this work and the number of cycle C_3 , C_4 and K_4 in $Pur(R)$ was found where $R = Z_p$, also gave girth and the dominating number of $Pur(R)$, in addition, a definition is provided the complement of pure graph denoted by $Pur^c(R)$.

References

- [1] A.Majidnya, A.Moussavi and K.Paykan, *Rings in which the annihilator of an ideals is pure*, Algebra colloq.22(spec01)(2016) 947-968.
- [2] Bhavanari S., and Kuncham S., *Discrete Mathematics and Graph Theory*, PHL Learning Private Limited, Delhi, 2014.
- [3] Bhavanari S., Kuncham S.,and Dasari N., Prime Graph of a Ring, *Journal of Combinatorics , Information and System Sciences*, vol.35(No.1-2) (2010) , 27-42.
- [4] Dhiren K.Basnet and Jayanta Bhattacharyya, *Nil clean graph of rings* ,arxiv 24:3(2017)481-492.

[5] Francesco Barioli, *Completely positive matrices with a book-graph,* Linear Algebra and its Applications 277 (1998) 11 31.

[6] Jafari A. and Sahebi S., Vonneumann Regular Graphs Associated with Rings, *Journal of Discrete Mathematics* , *Algorithms and Applications* , vol.10(No.3) (2018) 1850029, 1-13.

[7] Mohammad Habibi et al , *Clean graph of a ring*, Journal of Algebra and Its ApplicationsVol. 20, No. 09, 2150156 (2021).

[8] Rahman M., *Basic Graph Theory*, Springer , 2017 .

[9] kishor F.Pawar and Sandeep S.Joshi, *Study of prime Graph of a ring* , Thai Journal of mathematics, vol 17(2019) 2:369-344.

Article submitted 1 February 2023. Published as resubmitted by the authors 2 March 2023.