In this paper the centralizing and commuting concerning skew left -derivations and skew left -derivations associated with antiautomorphism on prime and semiprime rings were studied and the commutativity of Lie ideal under certain conditions were proved.
In the current paper, we study the structure of Jordan ideals of a 3-prime near-ring which satisfies some algebraic identities involving left generalized derivations and right centralizers. The limitations imposed in the hypothesis were justified by examples.
Let M be ,-ring and X be ,M-module, Bresar and Vukman studied orthogonal
derivations on semiprime rings. Ashraf and Jamal defined the orthogonal derivations
on -rings M. This research defines and studies the concepts of orthogonal
derivation and orthogonal generalized derivations on ,M -Module X and introduces
the relation between the products of generalized derivations and orthogonality on
,M -module.
Let M be a weak Nobusawa -ring and γ be a non-zero element of Γ. In this paper, we introduce concept of k-reverse derivation, Jordan k-reverse derivation, generalized k-reverse derivation, and Jordan generalized k-reverse derivation of Γ-ring, and γ-homomorphism, anti-γ-homomorphism of M. Also, we give some commutattivity conditions on γ-prime Γ-ring and γ-semiprime Γ-ring .
In this paper, The Grobner basis of the Toric Ideal for - contingency tables related with the Markov basis B introduced by Hussein S. MH, Abdulrahman H. M in 2018 is found. Also, the Grobner basis is a reduced and universal Grobner basis are shown.
It is well known that the wreath product is the endmorphism monoid of a free S-act with n-generators. If S is a trivial semigroup then is isomorphic to . The extension for to where is an independent algebra has been investigated. In particular, we consider is to be , where is a free left S-act of n-generators. The eventual goal of this paper is to show that is an endomorphism monoid of a free left S-act of n-generators and to prove that is embedded in the wreath product .
This paper presents the design and analysis of composite right left hand (CRLH) electromagnetic bandgap (EBG) structure. The proposed unit cell is consistent of a dielectric substrate with dimensions of 5×5×1 mm 3 made of FR4-Epoxy with εr = 4.4 underneath of a conductive patch with dimensions of 4.4×4.4mm 2 . The unit cell is structured to perform a negative permittivity (ε) and negative permeability (µ) in different bands. The proposed unit cell is developed to 5G systems in the sub-6GHz bands. In this work, a complete analysis of the unit cell in terms of Sparameters, constitutive parameters and refraction index are evaluated using HFSS simulation package based on Finite Element Method (FEM).
In this paper, we study the concepts of generalized reverse derivation, Jordan
generalized reverse derivation and Jordan generalized triple reverse derivation on -
ring M. The aim of this paper is to prove that every Jordan generalized reverse
derivation of -ring M is generalized reverse derivation of M.
In this paper, we will prove the following theorem, Let R be a ring with 1 having
a reverse derivation d ≠ 0 such that, for each x R, either d(x) = 0 or d(x) is
invertible in R, then R must be one of the following: (i) a division ring D, (ii) D 2 ,
the ring of 2×2 matrices over D, (iii) D[x]/(x ) 2
where char D = 2, d (D) = 0 and
d(x) = 1 + ax for some a in the center Z of D. Furthermore, if 2R ≠ 0 then R = D 2 is
possible if and only if D does not contain all quadratic extensions of Z, the center of
D.
this paper, we will prove the following theorem, Let R be a ring with 1 having
a reverse derivation d ≠ 0 such that, for each x R, either d(x) = 0 or d(x) is
invertible in R, then R must be one of the following: (i) a division ring D, (ii) D 2 ,
the ring of 2×2 matrices over D, (iii) D[x]/(x ) 2
where char D = 2, d (D) = 0 and
d(x) = 1 + ax for some a in the center Z of D. Furthermore, if 2R ≠ 0 then R = D 2 is
possible if and only if D does not contain all quadratic extensions of Z, the center of
D.
Let R be an associative ring. In this paper we present the definition of (s,t)- Strongly derivation pair and Jordan (s,t)- strongly derivation pair on a ring R, and study the relation between them. Also, we study prime rings, semiprime rings, and rings that have commutator left nonzero divisior with (s,t)- strongly derivation pair, to obtain a (s,t)- derivation. Where s,t: R®R are two mappings of R.