This paper investigates the concept (α, β) derivation on semiring and extend a few results of this map on prime semiring. We establish the commutativity of prime semiring and investigate when (α, β) derivation becomes zero.
This paper investigates the concept (α, β) derivation on semiring and extend a few results of this map on prime semiring. We establish the commutativity of prime semiring and investigate when (α, β) derivation becomes zero.
The main purpose of this paper is to investigate some results. When h is ï‡ -(ï¬ ,δ) – Derivation on prime Γ-near-ring G and K is a nonzero semi-group ideal of G, then G is commutative .
Let S be a prime inverse semiring with center Z(S). The aim of this research is to prove some results on the prime inverse semiring with (α, β) – derivation that acts as a homomorphism or as an anti- homomorphism, where α, β are automorphisms on S.
The concepts of generalized higher derivations, Jordan generalized higher derivations, and Jordan generalized triple higher derivations on Γ-ring M into ΓM-modules X are presented. We prove that every Jordan generalized higher derivation of Γ-ring M into 2-torsion free ΓM-module X, such that aαbβc=aβbαc, for all a, b, c M and α,βΓ, is Jordan generalized triple higher derivation of M into X.
In this work, we present the notion of sp[γ,γ^(* ) ]-open set, sp[γ,γ^(* ) ]-closed, and sp[γ,γ^(* ) ]-closure such that several properties are obtained. By using this concept, we define a new type of spaces named sp[γ,γ^(* ) ]-compact space.
In our research, we introduced new concepts, namely *and **-light mappings, after we knew *and **-totally disconnected mappings through the use of -open sets.
Many examples, facts, relationships and results have been given to support our work.
Let be a prime ring, be a non-zero ideal of and be automorphism on. A mapping is called a multiplicative (generalized) reverse derivation if where is any map (not necessarily additive). In this paper, we proved the commutativity of a prime ring R admitting a multiplicative (generalized) reverse derivation satisfying any one of the properties:
for all x, y
The objective of this paper is, first, study a new collection of sets such as field and we discuss the properties of this collection. Second, introduce a new concepts related to the field such as measure on field, outer measure on field and we obtain some important results deals with these concepts. Third, introduce the concept of null-additive on field as a generalization of the concept of measure on field. Furthermore, we establish new concept related to - field noted by weakly null-additive on field as a generalizations of the concepts of measure on and null-additive. Finally, we introduce the restriction of a set function on field and many of its properties and characterizations are given.
In this paper we introduce generalized (α, β) derivation on Semirings and extend some results of Oznur Golbasi on prime Semiring. Also, we present some results of commutativity of prime Semiring with these derivation.
The objective of this paper is, firstly, we study a new concept noted by algebra and discuss the properties of this concept. Secondly, we introduce a new concept related to the algebra such as smallest algebra. Thirdly, we introduce the notion of the restriction of algebra on a nonempty subset of and investigate some of its basic properties. Furthermore, we present the relationships between field, monotone class, field and algebra. Finally, we introduce the concept of measure relative to the algebra and prove that every measure relative to the is complete.