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SOME RESULTS OF (α, β) DERIVATIONS ON PRIME SEMIRINGS 

 

Maryam K. Rasheed*, Abdulrahman. H. Majeed 
Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq 

 
Abstract  

      This paper investigates the concept (α, β) derivation on semiring and extend a few 

results of this map on prime semiring. We establish the commutativity of prime 

semiring and investigate when (α, β) derivation becomes zero.  

 

 Keywords: Semirings, Prime Semirings, Semiprime Semirings, (α, β) Derivation. 

 

( على اشباه الحلقات الاوليةβ ,αبعض النتائج للمشتقات )  
 

، عبد الرحمن حميد مجيد*مريم خضير رشيد  
 قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق

 
 الخلاصة                       

( على اشباه الحلقات وقمنا بتوسيع بعض النتائج على اشباه β ,αفي هذا البحث درسنا مفهوم المشتقات )      

 .  يها( صفرا علβ ,αالمشتقات ) تصبحابدالية اشباه الحلقات الاولية وكذلك متى  حصلنا على و الاولية. لحلقاتا

 

 

1. Introduction 

     The notation of semiring was first introduced by Vandiver in 1934, then many researchers had been 

studying diverse kinds of semirings , itʼs properties and different types of derivations on it. A nonempty 

set say S together with two binary operations (addition and multiplication), this triple is called semiring, 

if S with addition is a semigroup, S with multiplication is also semigroup and addition distributive with 

respect to multiplication on S [1]. The only difference between ring and semiring conditions is there´s 

no addition invertible elements in semirings but this property exist in rings since the set together with 

addition define a group. If we suppose S any semiring and D: S→S be a map defined on S, then D is 

called additive map if it preserves addition relation. Now, this additive map said to be derivation on S if 

D (xy) = D(x) y + x D (y) for all x and y in S. Moreover (α, β) derivation introduced as d is derivation 

on S and α, β is two automorphisms on S such that d (xy) = α(x) d(y) + d(x) β(y) for all x and y in S [2]. 

We also used commutator which is defined in [3] as [x, y] = xy – yx with [x + y, z] = [x, z] + [y, z] and 

[xy, z] = x [y, z] + [x, z] y. We’ll also present some necessary definitions for this paper in the 

preliminaries. 

 

2. Preliminaries 

Definition 2.1: - [4] A nonempty set S with the binary operation ∗ said to be semigroup iff x ∗ (y ∗ z) = 

(x ∗ y) ∗ z for all x, y, z ∈ S. 

Definition 2.2: - [4] A semigroup S called commutative iff x ∗ y = y ∗ x for all x, y ∈ S.   

Definition 2.3: - [4] A nonempty set S with two binary operation + and  .  is said to be a semiring iff the 

following conditions satisfied:-  

1- (S, +) Semigroup. 

2- (S,  .) Semigroup.  

            ISSN: 0067-2904 
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3- x. (y + z) = x. y + x. z   and  (y + z) .x = y. x + z. x   for all x, y, z ∈ S. 

 

Notation: Throughout this paper we shall assume that S contains 0 and 1. 

 

Example 2.4: - [4] Let B = {0, 1} and +,  . defined on B by the tables below: 

 

 

 

 

 

           

(B, +,  .) is semiring. 

 

Example 2.5: - [4] Let 𝑍0
+ = {x ∈ Z: x ≥ 0}, + and . are usual addition and usual multiplication, then 

(𝑍0
+, +, .) is semiring but not ring. 

Example 2.6: - Let  𝑆 = {(
𝑎 𝑏
0 𝑐

) : 𝑎, 𝑏 , 𝑐 ∈ 𝑍0
+ }  with usual matrices addition and multiplication of 

integers, then S is semiring.   

Definition 2.7: - [5] A semiring S is called additively commutative iff  x + y = y + x  for all x, y ∈ S, 

and called multiplicatively commutative iff  x. y = y. x for all x, y ∈ S. Also S is called commutative 

semiring iff it is both additively and multiplicatively commutative. 

Definition 2.8: - [6] A semiring S is called additively cancellative iff  x + y = x + z implies y = z for all 

x, y, z ∈ S, and it is called multiplicatively cancellative iff  x. y = x. z implies y = z for all x, y, z ∈ S. 

Also S called cancellative semiring iff it is both additively cancellative and multiplicatively cancellative. 

Definition 2.9: - [3] Let S be a semiring, the set Z(S) = {x ∈ S: x. y = y. x, for all x, y ∈ S} is called the 

center of S. 

Lemma 2.10:- If S is multiplicatively commutative then Z(S) = S. 

Proof: - It´s clear that Z(S) ⊆ S, we need only to show that S ⊆ Z(S).  

Let x ∈ S, since S is multiplicatively commutative then x. y = y. x, for all y ∈ S, so x ∈ Z(S). 

We get S ⊆ Z(S), then Z(S) = S. 

Definition 2.11: - [4] Let (S, +,  .) be a semiring, an element 0 ∈ S called zero of S iff x + 0 = x = 0 + x 

for all x ∈ S, an element 1 ∈ S called identity of S iff x.1 = x = 1.x for all x ∈ S.  

Definition 2.12: - [1] Let (S, +,  .) be a semiring and T nonempty proper subset of S, T is called 

subsemiring if it is semiring with + and . i.e. (T, +,  .) is semiring itself.  

Remark 2.13: - [2] If S is semiring with 0 and 1 then any subset of S which contain 0 and 1 is 

subsemiring of S.  

Definition 2.14: - [7] Let (S, +, .) be a semiring and I a nonempty subset of S, if:-  

1- 1 ∉ I. 

2- a + b ∈ S for all a, b ∈ I. 

3- r.a ∈ S for all a ∈ I and r ∈ S. 

Then I is called Left ideal of S. Right ideal defined similarly. If I is both left and right,then we call it an 

ideal. 

Example 2.15: - Let 𝑍0
+ with usual addition and usual multiplication is semiring, < 2 > = {2n: for some 

n ∈ 𝑍0
+} is an ideal of 𝑍0

+. 

1- 1∉ < 2 >. 

2- Since usual addition closed under 𝑍0
+ then it is closed under < 2 >. 

3- Let 2𝑛1 ∈ < 2 > and n ∈ 𝑧0
+ then n. 2𝑛1= (2.n)  𝑛1∈ < 2 > since usual multiplication is associative.   

So, < 2 > is an ideal of 𝑍0
+ . 

Definition 2.16:- [1] Let S be a semiring and I a nonzero ideal of S, the set Z(I) = { a ∈ I : a. b = b. a, 

∀ b ∈ I} called the center of I . 

Lemma 2.17:- If I is commutative as semiring then Z (I) = I. 

Proof: - Trivial. 

Definition 2.18: - [8] A semiring S is called semiprime if whenever x S x = 0 implies x= 0 for all x ∈ S.  

Definition 2.19: - [8] A semiring S is called Prime if whenever x S y = 0 implies either x = 0 or y = 0 for 

all x, y ∈ S. 

. 0 1 

0 0 0 

1 0 1 

+ 0 1 

0 0 1 

1 1 1 
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Definition 2.20: - [8] A semiring S is called n-torsion free iff whenever nx = 0 then x = 0 for all x ∈ S, 

where n ≠ 0.   

Lemma 2.21:- Let S be a prime semiring and I a nonzero left (right) ideal of S, then Z (I) ⊆ Z (S). 

Proof: - Let 0 ≠ a ∈ Z (I), since Z (I) ⊆ I, then a ∈ I. 

Let x ∈ S, then x a ∈ I (By definition of left ideal). 

Since a ∈ Z (I), we have [xa, a] = x [a, a] + [x, a] a = 0 then, 

                                  [x, a] a = 0 for all x ∈ S                                                                        … (1) 

Replace x by xy in (1), where y ∈ S we get [xy, a] a =  x [y, a] a + [x, a] ya = 0.  

By using (1) we get [x, a] ya = 0 for all x, y ∈ S and for all a ∈ I. 

Then [x, a] S I = 0. 

By primness either [x, a] = 0 or I = 0. 

Since I nonzero ideal of S then [x, a] = 0  for all x ∈ S and a ∈ I 

Then Z (I) ⊆ Z (S).  

Lemma 2.22: - Let S be a semiring and I a nonzero ideal of S, if I commutative as semiring then I ⊆ Z 

(S) and if S prime then S is commutative. 

Proof: - Since I commutative as semiring then I = Z (I) by (Lemma 2.16) 

By (lemma 2.21) we have Z (I) ⊆ Z(S), then I ⊆ Z(S).  

Now, If S prime  

Let x, y ∈ S and a ∈ I 

Then a x ∈ Z(S) 

i.e. [ax, y] = 0 for all y ∈ S  

a [x, y] + [a, y] x = 0 ⇒ a [x, y] = 0 for all a ∈ I 

Then I [x, y] = 0 ⇒ I S [x, y] = 0 

Now by primness of S we get either I = 0 or [x, y] = 0 

Since I nonzero ideal then [x, y] = 0 for all x, y ∈ S, Then S commutative. 

Definition 2.23: - [2] Let S be a semiring, a function f: S →S is called additive map if it is preserve 

addition relation i.e. f (x + y) = f (x) + f (y) for all x, y ∈ S. 

Definition 2.24: - [2] An additive map d: S→S is called derivation on S if d (xy) = d (x) y + x d (y) for 

all x, y ∈ S   

Definition 2.25: - [8] Let S be a semiring and α, β are two automorphisms of S, an additive map d: S→S 

is called (α, β) derivation on S if d (xy) = α (x) d (y) + d (x) β (y) for all x, y ∈ S. 

Example 2.26: - [2] Let S = {(
a b
0 c

) : a, b, c ϵ 𝑍0
+ } with usual matrices addition and multiplication is 

semiring. Suppose α: S→S defined by α ((
a b
0 c

)) = (
a 0
0 0

) and β: S→S defined by β ((
a b
0 c

)) =  

(
0 0
0 c

) . Define a derivation d: S→S by d ((
a b
0 c

)) =   (
0 b
0 0

) , d is (α, β) derivation on S. 

Since d is derivation on S (i.e. additive map), we will only check if d (xy) = α (x) d (y) + d (x) β (y). 

Now, Let x = (
𝑎1 𝑏1

0 𝑐1
)  and y =  (

𝑎2 𝑏2

0 𝑐2
) , 

d (x y) = (
0 𝑎1𝑏2 + 𝑏1𝑐2

0 0
) ,  

α (x) d (y) = (
0 𝑎1𝑏2

0 0
)  and d (x) β (y) = (

0 𝑏1𝑐2

0 0
) . 

Then α (x) d (y) + d (x) β (y) = (
0 𝑎1𝑏2 + 𝑏1𝑐2

0 0
)  

We get, d (xy) = α (x) d (y) + d (x) β (y) then d is (α, β) derivation on S. 

Lemma 2.27:- Let S be a prime semiring. Suppose that α and β are two automorphisms of S and d: S→S 

is (α, β) derivation such that for all x ∈ S, a. d (x) =0 or d (x). a= 0, where a ∈ S, then either a = 0 or d = 

0. 

Proof:- Let a. d (x) = 0.  

Since d is (α, β) derivation of S, then d (xy) = α (x) d (y) + d (x) β (y) for all x, y ∈ S. 

Then a. (α (x) d (y) + d (x) β (y)) =  a . α (x) d (y) + a. d (x) β (y) =  a . α(x) d(y) = 0. 

Since α is automorphism of S we get, a S d (y) = 0. 

By primness of S either a = 0 or d (x) = 0 for all x ∈ S. i.e. either a = 0 or d = 0. 

Similarly for d (x). a = 0. 
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3. Results 

Theorem 3.1:- Let S be a cancellative prime semiring. Suppose that α and β are two nonzero 

automorphisms of S and d: S⟶S is (α, β) derivation. If d acts as homomorphism on S then d = 0 on S. 

Proof: - Since d is (α, β) derivation of S, then  

                 d (x y) = α (x) d (y) + d (x) β (y) for all x, y ∈ S                                                          ... (1)   

Since d acts as homomorphism on S, we get 

                     d (x y) = d (x) d (y) for all x, y ∈ S                                                                          ... (2)      

From (1) and (2) we get: 

α (x) d (y) + d (x) β (y) = d (x) d (y) for all x, y ∈ S                                                                     ... (3) 

Replace x by x r in (3), where r ∈ S, we get: 

α (x r) d (y) + d (x r) β (y) = d (x r) d (y)   

Since d acts homomorphism on S and α, β automorphisms of S then  

 α (x) α (r) d (y) + d (x) d(r) β (y) = d (x) d (r) d (y) 

                                                      = d (x) d (r y) 

                                                      = d (x) [α (r) d (y) + d (r) β (y)] 

                                                      = d (x) α (r) d (y) + d (x) d (r) β (y)                           

Then by additively cancellative property we get: 

α (x) α (r) d (y) = d (x) α (r) d (y)                                                                                  

Now, by multiplicatively cancellative propertywe get: 

α (x) = d (x) for all x ∈ S                                                                                                             ... (4) 

Replace x by x y in the above equation we get:  

α (x y) = d (x y) 

Since α is automorphism of S then 

α (x) α (y) = d (xy)     

Since α = d from relation (4) then                                    

α (x) d (y) = α (x) d (y) + d (x) β (y)                   

By additive cancellative property the result is: 

d (x) β (y) = 0   

By (Lemma 2.27) and since β ≠ 0 then d = 0 on S. 

Theorem 3.2: - Let S be a cancellative prime semiring. Suppose that α and β are two nonzero 

automorphisms of S and d: S⟶S is (α, β) derivation such that α and β commute with d. If d acts as anti-

homomorphism on S then d = 0 on S. 

Proof: - since d is (α, β) derivation of S  

Then d (x y) = α (x) d (y) + d (x) β (y) for all x, y ∈ S                                                                  ... (1)   

Since d acts as anti-homomorphism on S  

Then d (x y) = d (y) d (x) for all x, y ∈ S                                                                                     ... (2)      

From (1) and (2) we get: 

α (x) d (y) + d (x) β(y) = d (y) d (x) for all x, y ∈ S                                                                      ... (3) 

Replace x by x y in (3) we get: 

α (x y) d (y) + d (x y) β (y) = d (x y) d (y)   

Since d acts homomorphism on S and α, β automorphisms of S, then  

α (x) α (y) d (y) + d (y) d (x) β (y) = d (y) d (x) d (y) 

                                                       = d (y) d (xy) 

                                                       = d (y) [α (x) d (y) + d (x) β(y)] 

                                                       = d (y) α (x) d (y) + d (y) d (x) β(y)                           

Then by additively cancellative property we get: 

α (x) α (y) d (y) = d (y) α (x) d (y)                                                                                  

Now, since α commute with d and by multiplicatively cancellative property we get: 

α (y) = d (y) for all y ∈ S                                                                                                            … (4)                                                                                 

Replace y by x y in the above equation we get:  

α (x y) = d (x y) 

Since α is automorphism of S, then α (x) α (y) = d (x y).                                        

Since α = d from relation (4) then α (x) d (y) = α (x) d (y) + d (x) β (y)                  

By additive cancellative property the result is: 
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d (x) β (y) = 0   

By (Lemma 2.27) and since β ≠ 0 then d = 0 on S. 

Lemma 3.3:- Let S be a semiring and I a nonzero ideal of S. Suppose that α, β are two automorphisms 

on S and d: S→S is (α, β) derivation such that d onto on I. If [d (u), a] = 0 for all u ∈ I and a ∈ S, then a 

∈ Z (I). 

Proof: - Since [d (u), a] = 0 for all u ∈ I, then [d (I), a] = 0 for all a ∈ S. 

Since d is onto on I, then d (I) = I. 

Then [I, a] = 0 for all a ∈ S. 

Then a ∈ Z (I). 

Theorem 3.4: - Let S be a 2-torsion free prime semiring and I nonzero ideal of S. Suppose that α and β 

are two nonzero automorphisms of S and d: S⟶S is (α, β) derivation on S such that d onto on I, and d 

commute with 𝛼 and 𝛽. If d (xy) = d (yx) for all x, y ∈ I then S  is commutative. 

Proof: - For any element c ∈ I such that d (c) = 0, We have d (z c) = d (c z). 

Let c = [x, y] where x, y ∈ I.  

Since d is (α, β) derivation on S then,  

α (z) d (c) + d (z) β (c) = α (c) d (z) + d (c) β (z) 

Since d (c) = 0 we get: 

d (z) β (c) = α (c) d (z)                                                                                                               … (1) 

i.e. [c, d (z)] = 0 for all z ∈ I 

By (Lemma 3.3) we get c ∈ Z (I) for all c ∈ I 

Then [x, y] ∈ Z (I). Thatʼs mean:  

 [a, [x, y]] = 0 for all a ∈ I                                                                                                         … (2) 

Replace y by x y in (2) we get: 

[a, [x, x y]] = 0 

[a, x] [a, y] = 0                                                                                                                           … (3) 

Replace y by y a in (3) we get: 

[a, x] [a, ya] = 0 

[a, x] y [x, a] = 0 for all x, y, a ∈ I 

[a, x] I [x, a] = 0 

[a, x] S I [x, a] = 0. 

By primness of S, either [a, x] = 0 or I [x, a] = 0. 

If [a, x] = 0 for all a, x ∈ I then I is commutative. 

If I [x, a] = 0, then I S [x, a] = 0. 

By primness of S and since I is nonzero ideal we get [x, a] = 0 for all x, a ∈ I.  

Then I  is commutative. 

By (Lemma2.22) we get S is commutative. 

Lemma 3.5:- Let S be prime semiring. Suppose that α and β are two nonzero automorphisms of S and 

d: S⟶S is (α, β) derivation on S. If d acts as homomorphism on I and d = 0 on I then d = 0 on S. 

Proof: - Let s v ∈ I, where s ∈ S and v ∈ I, then d (s v) = 0 

Since d acts as homomorphism then, 

d (s) d (v) = 0                                                                                                                            … (1) 

Since d is (α, β) derivation of S then,  

α (s) d (v) + d (s) β (v) = 0                                                                                                        … (2) 

From (1) and (2) we get: 

d (s) d (v) = α (s) d (v) + d (s) β (v)  

Since d = 0 on I then,  

D (s) β (v) = 0 for all s ∈ S and v ∈ I                                                                                         … (3) 

By (lemma 2.27) either β (v) = 0 for all v ∈ I or d (s) =0 for all s ∈ S  

But β nonzero, then d (s) = 0 for all s ∈ S.  

Then d = 0 on S.  

Theorem 3.6: - Let S be a cancellative prime semiring. Suppose that α and β are two nonzero 

automorphisms of S and d: S⟶S is (α, β) derivation on S. If d acts as homomorphism on I then d = 0 on 

S. 

Proof 
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since d is (α, β) derivation of S  

Then d (uv) = α (u) d (v) + d (u) β (v)   for all u, v ∈ I                                                               ... (1)   

Since d acts as homomorphism on S  

Then d (u v) = d (u) d (v)   for all u, v ∈ I                                                                                   ... (2)      

From (1) and (2) we get: 

α (u) d (v) + d (u) β (v) = d (u) d (v)    u, v ∈ I                                                                           ... (3) 

Replace v by v t in (3), where t ∈ I, we get: 

α (u) d (v t) + d (u) β (v t) = d (u) d (v t)   

Since d acts homomorphism on I and α, β are automorphisms of I then,   

α (u) d (v) d (t) + d (u) β (v) d (t) = d (u) d (v) d (t) 

                                                     = d (u v) d (t) 

                                                     = [α (u) d (v) + d (u) β (v)] d (t) 

                                                     = α (u) d (v) d (t) + d (u) β (v) d (t)                           

Then by additively cancellative property we get: 

d (u) β (v) d (t) = d (u) β (v) β (t)                                                                                   

Now, by multiplicatively cancellative propertywe get: 

d (t) = β (t)     for all t ∈ S                                                                                                          … (4)  

Substitute (4) in (3) we get:                                                                                      

d (u) d (v) = α (u) d (v) + d (u) d (v) 

By multiplicatively cancellative property the result is: 

α (u) d (v) = 0   

Replace u by ur, where r ∈ S   

α (ur) d (v) = 0 

𝛼 (u) 𝛼 (r) d (v) = 0 

Since α automorphisms of S then  

𝛼 (u) S d (v) = 0 

By primness either 𝛼 (u) = 0 for all u ∈ I or d (v) = 0 for all u ∈ I 

But α is nonzero, then d = 0 on I. 

By (Lemma 3.5) we get d = 0 on S.  

Lemma 3.7:- Let S be a prime semiring. Suppose that α and β are two nonzero automorphisms of S and 

d: S⟶S is (α, β) derivation on S. If d acts as anti-homomorphism on I and d = 0 on I then d = 0 on S. 

Proof: - Let s v ∈ I, where s ∈ S and v ∈ I , then d (sv) = 0 

Since d acts as anti-homomorphism then, 

d (v) d (s) = 0                                                                                                                            … (1) 

Since d is (α, β) derivation of S then,  

α (s) d (v) + d (s) β (v) = 0                                                                                                         … (2) 

From (1) and (2) we get: 

d (v) d (s) = α (s) d (v) + d (s) β (v) 

Since d = 0 on I then,  

d (s) β (v) = 0 for all s ∈ S and v ∈ I                                                                                          … (3) 

By (Lemma 2.27) either β (v) = 0 for all v ∈ I or d(s) =0 for all s ∈ S  

But β nonzero, we get d (s) = 0 for all s ∈ S. 

Then d = 0 on S.   

Theorem 3.8: - Let S be a cancellative prime semiring. Suppose that α and β are two nonzero 

automorphisms of S and d: S⟶S is (α, β) derivation on S such that d commute with α and β. If d acts as 

anti-homomorphism on I then d = 0 on S. 

Proof: - Since d is (α, β) derivation of S  

Then d (u v) = α (u) d (v) + d (u) β (v)   for all u, v ∈ I                                                               ... (1)   

Since d acts as anti-homomorphism on S  

Then d (u v) = d (v) d (u)   for all u, v ∈ I                                                                                   ... (2)      

From (1) and (2) we get: 

α (u) d (v) + d (u) β (v) = d (v) d (u)    u, v ∈ I                                                                           ... (3) 

Replace v by v t in (3), where t ∈ I, we get: 

α (u) d (v t) + d (u) β (vt) = d (v t) d (u)   
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Since d acts anti-homomorphism on I then   

α (u) d (v) d (t) + d (u) β (v) d (t) = d (t) d (v) d (u) 

                                                     = d (t) d (u v) 

                                                     = d (t) [α (u) d (v) + d (u) β (v)] d (u) 

                                                     = d (t) α (u) d (v) + d (t) d (u) β (v)                           

Since α commute with d and by additively cancellative property we get: 

d (t) β (v) d (u) = d (u) β (v) β (t)                                                                                   

Now, since β commute with d and by multiplicatively cancellative property we get: 

d (t) = β (t)     for all t ∈ S                                                                                                          … (4)  

Substitute (4) in (3) we get:                                                                                      

d (v) d (u) = α (u) d (v) + d (v) d (u) 

By multiplicatively cancellative property the result is: 

α (u) d (v) = 0   

By (Lemma 2.27) either α (u) = 0 for all u ∈ I, or d (v) = 0 for all v ∈ I 

But, α is nonzero, then d (v) = 0 for all v ∈ I,then d = 0 on I. 

By (Lemma 3.7) we get d = 0 on S.  
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