In this work we define and study new concept of fibrewise topological spaces, namely fibrewise soft topological spaces, Also, we introduce the concepts of fibrewise closed soft topological spaces, fibrewise open soft topological spaces, fibrewise soft near compact spaces and fibrewise locally soft near compact spaces.
The main idea of this research is to consider fibrewise pairwise versions of the more important separation axioms of ordinary bitopology named fibrewise pairwise - spaces, fibrewise pairwise - spaces, fibrewise pairwise - spaces, fibrewise pairwise -Hausdorff spaces, fibrewise pairwise functionally -Hausdorff spaces, fibrewise pairwise -regular spaces, fibrewise pairwise completely -regular spaces, fibrewise pairwise -normal spaces and fibrewise pairwise functionally -normal spaces. In addition we offer some results concerning it.
The main idea of this research is to study fibrewise pairwise soft forms of the more important separation axioms of ordinary bitopology named fibrewise pairwise soft
In this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise Lindelöf and locally Lindelöf topological spaces, which are generalizations of will-known concepts: Lindelöf topological space (1) "A topological space X is called a Lindelöf space if for every open cover of X has a countable subcover" and locally Lindelöf topological space (1) "A topological space X is called a locally Lindelöf space if for every point x in X, there exist a nbd U of x such that the closure of U in X is Lindelöf space". Either the new concepts are: "A fibrewise topological space X over B is called a fibrewise Lindelöf if the projection function p : X→B is Lindelöf" and "The fibrewise topological space X over B
... Show MoreThis paper is devoted to introduce weak and strong forms of fibrewise fuzzy ω-topological spaces, namely the fibrewise fuzzy -ω-topological spaces, weakly fibrewise fuzzy -ω-topological spaces and strongly fibrewise fuzzy -ω- topological spaces. Also, Several characterizations and properties of this class are also given as well. Finally, we focused on studying the relationship between weakly fibrewise fuzzy -ω-topological spaces and strongly fibrewise fuzzy -ω-topological spaces.
In this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise near compact and fibrewise locally near compact spaces, which are generalizations of well-known concepts near compact and locally near compact topological spaces. Moreover, we study relationships between fibrewise near compact (resp., fibrewise locally near compact) spaces and some fibrewise near separation axioms.
We introduce and discus recent type of fibrewise topological spaces, namely fibrewise bitopological spaces, Also, we introduce the concepts of fibrewise closed bitopological spaces, fibrewise open bitopological spaces, fibrewise locally sliceable bitopological spaces and fibrewise locally sectionable bitopological spaces. Furthermore, we state and prove several propositions concerning with these concepts.
We introduce and discuss the modern type of fibrewise topological spaces, namely fibrewise fuzzy topological spaces. Also, we introduce the concepts of fibrewise closed fuzzy topological spaces, fibrewise open fuzzy topological spaces, fibrewise locally sliceable fuzzy topological spaces and fibrewise locally sectionable fuzzy topological spaces. Furthermore, we state and prove several theorems concerning these concepts.
Fibrewise topological spaces theory is a relatively new branch of mathematics, less than three decades old, arisen from algebraic topology. It is a highly useful tool and played a pivotal role in homotopy theory. Fibrewise topological spaces theory has a broad range of applications in many sorts of mathematical study such as Lie groups, differential geometry and dynamical systems theory. Moreover, one of the main objects, which is considered in fibrewise topological spaces theory is connectedness. In this regard, we of the present study introduce the concept of connected fibrewise topological spaces and study their main results.
We introduce in this paper some new concepts in soft topological spaces such as soft simply separated, soft simply disjoint, soft simply division, soft simply limit point and we define soft simply connected spaces, and we presented soft simply Paracompact spaces and studying some of its properties in soft topological spaces. In addition to introduce a new types of functions known as soft simply