This paper introduces some properties of separation axioms called α -feeble regular and α -feeble normal spaces (which are weaker than the usual axioms) by using elements of graph which are the essential parts of our α -topological spaces that we study them. Also, it presents some dependent concepts and studies their properties and some relationships between them.
This research presents the concepts of compatibility and edge spaces in
This paper presents the concepts of prepaths, paths, and cycles in α-topological spaces and studies them in orderable spaces. Also, many relationships are proved with their equivalences using some properties in topological spaces like compactness and locally connectedness.
This dissertation depends on study of the topological structure in graph theory as well as introduce some concerning concepts, and generalization them into new topological spaces constructed using elements of graph. Thus, it is required presenting some theorems, propositions, and corollaries that are available in resources and proof which are not available. Moreover, studying some relationships between many concepts and examining their equivalence property like locally connectedness, convexity, intervals, and compactness. In addition, introducing the concepts of weaker separation axioms in α-topological spaces than the standard once like, α-feebly Hausdorff, α-feebly regular, and α-feebly normal and studying their properties. Furthermor
... Show MoreThis paper introduces cutpoints and separations in -connected topological spaces, which are constructed by using the union of vertices set and edges set for a connected graph, and studies the relationships between them. Furthermore, it generalizes some new concepts.
In this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise near topological spaces over B. Also, we introduce the concepts of fibrewise near closed and near open topological spaces over B; Furthermore we state and prove several Propositions concerning with these concepts.
In this work we define and study new concept of fibrewise topological spaces, namely fibrewise soft topological spaces, Also, we introduce the concepts of fibrewise closed soft topological spaces, fibrewise open soft topological spaces, fibrewise soft near compact spaces and fibrewise locally soft near compact spaces.
We define and study new ideas of fibrewise topological space on D namely fibrewise multi-topological space on D. We also submit the relevance of fibrewise closed and open topological space on D. Also fibrewise multi-locally sliceable and fibrewise multi-locally section able multi-topological space on D. Furthermore, we propose and prove a number of statements about these ideas.
The main idea of this research is to consider fibrewise pairwise versions of the more important separation axioms of ordinary bitopology named fibrewise pairwise - spaces, fibrewise pairwise - spaces, fibrewise pairwise - spaces, fibrewise pairwise -Hausdorff spaces, fibrewise pairwise functionally -Hausdorff spaces, fibrewise pairwise -regular spaces, fibrewise pairwise completely -regular spaces, fibrewise pairwise -normal spaces and fibrewise pairwise functionally -normal spaces. In addition we offer some results concerning it.