The aim of this paper is to introduce and study some of the Fibrewise minimal regular,Fibrewise maximal regular, Fibrewise minimal completely regular, Fibrewise maximal completely regular, Fibrewise minimal normal, Fibrewise maximal normal, Fibrewise minimal functionally normal, and Fibrewise maximal functionally normal. This is done by providing some definitions of the concepts and examples related to them, as well as discussing some properties and mentioning some explanatory diagrams for those concepts.
The purpose of this paper is to consider fibrewise near versions of the more important separation axioms of ordinary topology namely fibrewise near T0 spaces, fibrewise near T1 spaces, fibrewise near R0 spaces, fibrewise near Hausdorff spaces, fibrewise near functionally Hausdorff spaces, fibrewise near regular spaces, fibrewise near completely regular spaces, fibrewise near normal spaces and fibrewise near functionally normal spaces. Also we give several results concerning it.
Abstract. The minimal or maximal topological space is one of the topological spaces that we will employ in fibrewise locally sliceable and fibrewise locally sectionable. Now in this research I relied on some definitions specific to the research fibrewise maximal and minimal topological spaces. We will define a fibrewise locally minimal sliceable, fibrewise locally maximal sliceable, fibrewise locally minimal sectionable and fibrewise locally maximal sectionable, and I also clarified some examples of them and used them in characteristics by also clarifying them in diagrams.
Form the series of generalization of the topic of supra topology is the generalization of separation axioms . In this paper we have been introduced (S * - SS *) regular spaces . Most of the properties of both spaces have been investigated and reinforced with examples . In the last part we presented the notations of supra *- -space ( =0,1) and we studied their relationship with (S * - SS *) regular spaces.
In this paper, a new type of supra closed sets is introduced which we called supra β*-closed sets in a supra topological space. A new set of separation axioms is defined, and its many properties are examined. The relationships between supra β*-Ti –spaces (i = 0, 1, 2) are studied and shown with instances. Additionally, new varieties of supra β*-continuous maps have been taken into consideration based on the supra β*-open sets theory.
The main idea of this research is to study fibrewise pairwise soft forms of the more important separation axioms of ordinary bitopology named fibrewise pairwise soft
The concept of fuzzy orbit open sets under the mapping
This research presents the concepts of compatibility and edge spaces in