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Abstract : The main purpose of this paper is to introduce a some concepts in fibrewise 

bitopological spaces which are called fibrewise �� , fibrewise �� -closed, 

fibrewise �� −compact, fibrewise ��-perfect, fibrewise weakly ��-closed, fibrewise almost 

��-perfect, fibrewise ��∗-bitopological space respectively. In addition the concepts as ��-

contact point, ij-adherent point, filter, filter base, ij-converges to a subset, ij-directed toward 

a set,  ��-continuous, ��-closed functions, ��-rigid set, ��-continuous functions, weakly ij-

closed, ij-H-set, almost ij-perfect, ��∗-continuous, pairwise Urysohn space, locally ij-QHC 

bitopological space are introduced and the main concept in this paper is fibrewise ��-perfect 

bitopological spaces. Several theorems and characterizations concerning with these 

concepts are studied. 

 

Keywords : bitopological spaces, closed bitopological space, filter base, Fibrewise 

IJ-Perfect Bitopological Spaces 

1. Introduction and Preliminaries. 
In order to begin the category in the classification of fibrewise (briefly, F.W.) sets over a given set, 

named the base set, which say B. A F.W. set over B consists of a set M with a function p: M →
B, that is named  the projection. The fibre over b for every point b in B is the subset M� = p��(b) 

of M. Perhaps, fibre will be empty since we do not require p is surjectve, also, for every subset B∗ 

of B, we consider M	∗ = p��(B∗) as a F.W. set over B∗ with the projection determined by p. The 

alternative notation of M	∗ is sometime referred to as M ∣ B∗. We consider the Cartesian product 

B × T, for every set T, as a F.W. set over B by the first projection. 

The bitopological spaces were first created by Kelly [٧] in 1963 and after that a large number 
of researches have been completed to generalize the topological ideas to bitopological setting. A 
set M with two topologies τ� and τ� is called bitopological space [7] and is denoted by (M, τ�, τ�). 
By τ-open (resp., τ-closed), we shall mean the open (resp., closed) set with respect to τ in M, 
where i = 1,2. A is open (resp., closed) if it is both τ�-open (resp., τ�-closed) and τ�-open (resp., 
τ�-closed) in M. As well as, we built on some of the results in [1, 8, 13, 14, 15, 16,17, 18]. For other 
notations or notions which are not mentioned here we go behind closely I. M. James [5], R. 
Engelking [٤] and N. Bourbaki [3]. 
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Definition:1.1. [�]   If � and � with projections �� and ��, respectively, are F.W. sets over �, a 

function �: � → � is named F.W. function if �� � � = ��, or �(��) ⊂ �� for every � ∈ �. 
 

Definition: 1.2. [�] Let (�, �) be a topological space. The F.W. topology on a F.W. set � over � 
mean any topology on � makes the projection � is continuous. 
 

Definition: 1.3. [�] The F.W. function �: � → �, where � and � are F.W. topological spaces 

over � is named: 

Continuous if for every � ∈ �� ; � ∈ �, the inverse image of every open set of �(�) is an open 

set of �. 
Open if for every � ∈ ��  ; � ∈ �, the direct image of every open set of � is an open set of �(�). 

 

Definition:1.4. [�] The F.W. topological space (�, �) over (�, �) is named F.W. closed, (resp. 

F.W. open) if the projection � is closed (resp. open). 
 

Definition: 1.5. [�] The triple (�, ��, ��) where � is a non-empty set and �� and �� are 

topologies on � is named bitopological spaces. 

Definition:1.6. [�] A function �: (�, ��, ��) → (�, !�, !�) is said to be �"-continuous (resp. �"-
open and �"-closed), if the functions �: (�, �") → (�, !") are continuous (resp. open and closed), 

� is named continuous (resp. open and closed) if it is �"-continuous (resp. �"-open and �"-closed) 

for every � = 1,2. 

Definition:1.7. [#$]  Let (�, ��, ��) be a bitopological space. The F.W. bitopology on a F.W. set 

� over � mean any bitopology on � makes  the projection � is continuous.  

Definition 1.8. [6]  A point � in (�, ��, ��) is called an ij-contact point of a subset % ⊆ � if and 

only if for every �"-open nbd ' of x, (�*�+-(')) ∩ % ≠ ∅. The set of all ij-contact points of A is 

called the ij-closure of A and is denoted by �� − +-(%). % ⊂ � is called ij-closed if and only if 

% = �� − +-(%), where �, � = 1, 2, (� ≠ �). 

Definition 1.9 [3] A filter ℱ on a set � is a nonempty collection of nonempty subsets of � with 
the properties: 

(a) If <�, <� ∈  ℱ, then <� ∩ <� ∈  ℱ. 
(b) If < ∈  ℱ and F ⊆ <∗ ⊆ M, then <∗  ∈  ℱ. 

Definition 1.10. [3] A filter base ℱ on a set � is a nonempty collection of nonempty subsets of � 

such that if <�, <� ∈  ℱ then <> ⊂ <� ∩ <� for some <> ∈  ℱ. 

Definition 1.11. [3] If ℱ and ? are filter bases on �, we say that ? is finer than ℱ (written as ℱ < 

?) if for each < ∈  ℱ, there is @ ∈  ? such that @ ⊆  < and that ℱ meets ? if < ∩ @ ≠ � for 

every < ∈ ℱ and @ ∈ ?. 
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Definition 1.12. [10] A filter base ℱ on � i s said to be ij-converges to a subset % of �  (written 

as  ℱ 
    "*�CDE    
F⎯⎯⎯⎯⎯⎯H A) if and only if for every �"-open cover I of %, there is a finite subfamily IJ of 

I and a number < of ℱ such that < ⊂ ∪ {�* − +-('): ' ∈ IJ}. If � ∈ �, we say   ℱ 
    "*�CDE    
F⎯⎯⎯⎯⎯⎯H � 

if and only if  ℱ 
    "*�CDE    
F⎯⎯⎯⎯⎯⎯H {�} or equivalently, �*-closure of every �"-open nbd of � contains some 

members of ℱ. 

 

Definition 1.13. [2] A function   L: (�, ��, ��)  →  (�, !�, !�) is called ij-continuous if and only if 

for any !"-open nbd N of L (�), there exists a �"-open nbd ' of � such that L (�*-+-(')) ⊂ !*-

+-(N), where �, � = 1, 2. 

Definition 1.14. [2] A point � in a bitopological space (�, ��, ��) is called an ij-adherent point of 

a filter base ℱ on � if and only if it is an ij-contact point of every number of  ℱ. The set of all ij-

adherent points of ℱ is called the ij-adherence of ℱ and is denoted by ij-ad ℱ, where �, � = 1, 2. 

2. Fibrewise IJ-Perfect Bitopological Spaces. 
In this section, we introduce the notion of ij-perfect bitopological, ij-rigidity spaces and investigate 

some of their basic properties. 

Definition 2.1. Let (�, ��, ��) be a bitopological space. The F.W. ij-bitopology on a F.W. set � 

over � mean any bitopology on � for which the projection � is ij-continuous, where �, � =  1, 2.  

Definition 2.2. A function L ∶  (�, ��, ��)  →  (�, !�, !�) is called ij-closed if the image of each 

ij-closed set in � is ij-closed set in �, where �, � = 1, 2. 

Theorem 2.3. A function L: (�, ��, ��) →  (�, !�, !�) is ij-closed if and only if �� − +-(L(%))  ⊂
 L(�� − +-(%)) for each % ⊂  �, where �, � = 1, 2. 
Proof. (⇒) Suppose that L  is ij-closed. Let % ⊂ �, since L  is ij-closed then L(ij − cl(A)) is ij-

closed set in �, since ij − cl(A) is closed in �. so, ij − cl(f(A))  ⊂ L(ij − cl(A)). 

(⇐) Suppose that % is ij-closed set in �, so % = ij − cl(A), but we have ij − cl(f(A)) ⊂ L(ij −

cl(A)), thus �� − +-(L(%)) ⊂ L(%), so L(%) is ij-closed in �, therefore L is ij-closed.  

Definition 2.4. A filter base ℱ on bitopological space (�, ��, ��) is said to be �� −converges to a 

point � ∈  � (written as  ℱ 
    "*�CDE    
F⎯⎯⎯⎯⎯⎯H x) if and only if every �"-open nbd ' of � contains some 

elements of ℱ, where �, � = 1, 2. 
 

Definition 2.5. A filter base ℱ on bitopological space (�, ��, ��) is said to be ij-directed toward a 

set % ⊆ �, written as ℱ  
   "*�R    
F⎯⎯⎯⎯H   %, if and only if every filter base ? finer than ℱ has an 

�� −adherent point in %, i.e. (�� − SU ?) ∩ % ≠ �. We write ℱ
   "*�R  
F⎯⎯⎯H � to mean  ℱ

  "*�R  
F⎯⎯⎯H{x}, 

where � ∈  �, where �, � = 1, 2. 
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Theorem 2.6. A point � in bitopological space (�, ��, ��) is an ij-adherent point of a filter base ℱ 

on � if and only if there exists a filter base ℱ∗  finer than ℱ such that ℱ∗    "*�CDE    
F⎯⎯⎯⎯⎯⎯H  � , where 

�, � = 1, 2. 
Proof. (⇒) Let � be an �� −adherent point of a filter base ℱ on �, so it is an �� −contact point of 

every number of ℱ, then for every �" -open nbd ' of �, we have �* − +-(') ∩ < ≠ �  for every 

number < in ℱ. And thus �* − +-(') contains a some member of any filter base ℱ∗ finer than ℱ, 

so that ℱ∗ 
   "*�CDE   
F⎯⎯⎯⎯⎯H  �. 

(⇐) Suppose that � is not an �� −adherent point of a filter base ℱ on �, so there exist < ∈ ℱ such 

that � is not an �� −contact of <. Then there exists an �"-open nbd ' of � such that �* − +-(') ∩
< = �. Denote by ℱ∗ the family of sets <∗ = < ∩ (� − �*-+-(')) for < ∈  ℱ, then the sets <∗ are 

nonempty. Also ℱ∗ is a filter base and indeed it is finer than ℱ, because given <�
∗= <� ∩ (�-�*-

+-(')) and <�
∗= <� ∩ (�-�*-+-(')), there is an  <>  ⊆   <�∩ <� and this gives <>

∗ =  <> ∩ (�-�*-

+-('))  ⊆  <� ∩ <� ∩(�-�* -+-(')) =   <� ∩(M-�* -+-(')) ∩  <� ∩ (�-�* -+-(')),  by construction 

ℱ∗ not ij-convergent to �. This is a contradiction, and thus � is an ij-adherent point of a filter base 

ℱ on �. 

Theorem 2.7. Let ℱ be a filter base on bitopological space (�, ��, ��), and a point � ∈  �, then 

ℱ
   "*�CDE   
F⎯⎯⎯⎯⎯H  �  if and only if  ℱ

   "*�R   
F⎯⎯⎯⎯H  �, where �, � = 1, 2. 

Proof. (⇐⇐) If ℱ does not ij-converge to �, then there exists a �"-open nbd U of � such that < ⊄  �*-

+-('), for all < ∈ ℱ. Then ? ={(�-�*-+-(')  ∩  < ∶  < ∈ ℱ} is a filter base on � finer than ℱ, and 

clearly � ∉  ��-adherence of ? . Thus ℱ cannot be ij-directed towards � which is contradiction. So 

ℱ is ij-converge to �. 

(⇒) Clear. 

Definition 2.8. A function L ∶  (�, ��, ��)  → (�, !�, !�) is said to be ij-perfect if and only if for 

each filter base ℱ on L (�), ij-directed towards some subset % of L(�), the filter base L��(ℱ) is 

ij-directed towards L��(A) in M. f is called pairwise ij-perfect if and only if f is 12 and 21-

perfect, where �, � = 1, 2. 

Definition 2.9. The F.W. bitopological space (�, ��, ��) over bitopological space (�, ��, ��) is 

called F.W. ij-perfect if and only if the projection � is ij-perfect, where �, � =  1, 2. 
In the following theorem we show that only points of N could be sufficient for the 

Subset A in definition [2.8] and hence ij-direction can be replaced in view of theorem [2.6] by ij-

convergence.                                                         

Theorem 2.10. Let (�, ��, ��) be a F.W. bitopological space over bitopological space (�, ��, ��). 

Then the following are equivalent: 

(a) (M, τ�, τ�) is F.W. ij-perfect bitopological space. 

(b) For each filter base ℱ on �(�), which is ij-convergent to a point � in �, �ℱ
  "*�R  
F⎯⎯⎯H ��. 

(c)  For any filter base ℱ on �, ij-ad  �(ℱ) ⊂ � (ij-ad ℱ). 
Proof. (a) ⇒ (b) Follows from theorem (2.7). 

(b) ⇒ (c) Let � ∈ ij-ad � (ℱ). Then by theorem (2.6), there is a filter base ? on �(�) finer than � 

(ℱ) such that  
  "*�CDE  
F⎯⎯⎯⎯⎯H �. Let  I ={�?  ∩ F : @ ∈ ? and < ∈ ℱ}. Then I is a filter base on � finer 

than �?. Since ? 
  "*�R  
F⎯⎯⎯H  �, by theorem (2.7) and � is ij-perfect, �?

  "*�R  
F⎯⎯⎯H �� .  I being finer than 

 �?, we have  ��  ∩ (ij-ad  I) ≠  �. It is then clear that  ��  ∩ (ij-ad  ℱ) ≠  �. Thus � ∈  � (�� −
SU  <). 
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(c) ⇒ (a) Let  ℱ be a filter base on �(�) such that it is ij-directed towards some subset % of �(�). 
Let  ? be a filter base on � finer than  �ℱ . Then �( ?) is a filter base on �(�) finer than  ℱ and 

hence % ∩ (�� − SU �( ?))≠ �. Thus by (c) A ∩  p (ij − ad ?) ≠ φ so that  �\  ∩  (�� − SU  ?) ≠
�. This shows that  �ℱ  is ij-directed towards �\. Hence � is ij-perfect. 

Definition 2.11. The function  L: (�, ��, ��)  → (�, !�, !�) is called ij-compact function if it 

is �� −continuous, �� −closed and for each filter base ℱ in � then L��(ℱ) is filter base in �, 
where �, � =  1, 2. 
 

Definition 2.12 The F.W. �� −bitopological space (�, ��, ��) over bitopological space (�, ��, ��) 

is called F.W. �� −compact if and only if the projection p is �� −compact, where �, � = 1, 2. 
For example the bitopological product � ×� ^ is F.W. ij-compact over �, for all �� −compact 

space ^, where �, � = 1, 2. 

Definition 2.13. The F.W. ij-bitopological space (�, ��, ��) over bitopological space (�, ��, ��) 

is called F.W. ij-closed if and only if the projection � is ij-closed, where �, � = 1, 2. 

Theorem 2.14. If the F.W. bitopological space (�, ��, ��) over a bitopological space (�, ��, ��) 

is ij-perfect, then it is ij-closed, where �, � = 1, 2. 
Proof. Assume that � is a F.W. ij perfect bitopological space over B, then the projection �� ∶
 � →  � is ij-perfect, to prove that it is ij-closed, by (2. 10 (a)⇒(c)) for any filter base ℱ on M ij-

ad p(ℱ) ⊂ p(ij-ad (ℱ)), by theorem (2. 12 ) f is ij-closed if ij − cl L(A)  ⊂  L(ij − cl(A) for all % ⊂
�, therefore � is ij-closed where ℱ = {%}. 

Definition 2.15. A subset % of bitopological space (�, ��, ��) is said to be ij-rigid in � if and 

only if for each filter base ℱ on � with (�� − SU ℱ)  ∩  % =  �, there is �"-open set ' and <  ∈ ℱ 

such that % ⊂  ' and �*-+-(')  ∩  < =  �, or equivalently, if and only if for each filter base  ℱ 

on � whenever % ∩ (�� − SU ℱ)  =  �, then for some < ∈ ℱ, % ∩ (�� −  +-(<))  =  �, where 

�, � = 1, 2. 

Theorem 2.16. If (�, ��, ��) is F.W. ij-closed bitopological space over bitopological space (�, ��, 

��) such that each ��where � ∈ � is ij-rigid in M, then (�, ��, ��) is F.W. ij-perfect, where 

�, � = 1, 2. 
Proof. Assume that � is a F.W. ij-closed bitopological space over B, then the projection �� ∶
 � →  �  exist, to prove that it is ij-perfect. Let  ℱ be a filter base on � (�) such that ℱ

  "*�CDE  
F⎯⎯⎯⎯⎯H � 

in B, for some � ∈  �. If ? is a filter base on � finer than the filter base �ℱ , then �( ?) is a filter 

base on � , finer than ℱ . Since ℱ
  "*�R  
F⎯⎯⎯H �  by theorem (2.6), � ∈ ij-ad p(?),  i.e., � ∈ ∩ {�� −

SU �(@) ∶ @ ∈ ?} and hence {� ∈ ∩{�(�� − SU (@) : @ ∈ ?} by theorem (2.12), since � is ij-

closed. Then ��  ∩ ij-ad ( @) ≠ �, for all @ ∈ ?.  Hence for all ' ∈ �"  with �� ⊂ U, �*-cl(U)  ∩
 @ ≠ �, for all @ ∈  ?. Since �� is ij-rigid, it then follows that  �� ∩ (ij-ad ?)≠  �. Thus  �ℱ  
  "*�R  
F⎯⎯⎯H ��. Hence by theorem 2.10 (b)⇒(a), � is ij-perfect. 

Theorem 2.17. If F.W. ij-bitopological space (�, ��, ��) over bitopological space (�, ��, ��) is ij-

perfect, then it is ij-closed and for each � ∈ �, �� is ij-rigid in �, where �, � = 1, 2. 
Proof.  Assume that � is a F.W. ij-bitopological space over B, then the projection �� ∶  � →  �  

exist and it is ij-continuous. Since � is an ij-perfect so it is ij-closed. To prove the other part, let 

� ∈  �, and suppose ℱ is a filter base on � such that (ij-ad ℱ) ∩  ��= �. Then � ∉  � (ij-ad ℱ). 
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Since � is ij-perfect, by theorem (2.10 (a)⇒(c)) b ∉  ij − ad p(ℱ). Thus there exists an < ∈ ℱ such 

that � ∉ ij-ad �(<). There exists an �"-open nbd N of b such that �* − +-(N)  ∩  �(<)  =  �. Since 

� is ij-continuous, for each �  ∈  ��  we shall get a �"-open nbd '_ of � such that �(�* − +-('_)  ⊂
 �* − +-(N)  ⊂  � − �(<).  Then  �(�* − +-('_)  ∩  �(<) =  �,  so that �* -cl-('_ ) ∩ < =  �.  Then 

� ∉ ij-cl(<), for all � ∈ ��, so that ��  ∩ (ij-cl(F)) = �, Hence �� is ij-rigid in �. 

Corollary 2.18. A F.W. ij-bitopological space (�, ��, ��) over bitopological space (�, ��, ��) is 

ij-perfect if and only if it is ij-closed and each ��, where � ∈ � is ij-rigid in �, where �, � = 1, 2. 
Next we show that the above theorem remains valid if F.W. ij-closedness bitopological space 

replaced by a strictly weak condition which we shall called F.W. weak ij-closedness bitopological 

space. Thus we define as follows. 

Definition 2.19. A function L ∶  (�, ��, ��)  → (�, !�, !�) is said to be weakly ij-closed if for 

every ` ∈  L(�) and every �"-open set ' containing L��(`) in M, there exists a !" open nbd N 

of ` such that L�� (!*-cl(V)) ⊂ �*-+-(') , where �, � = 1, 2. 

Definition 2.20. The F.W. ij-bitopological space (�, ��, ��) over bitopological space (�, ��, ��) 

is called F.W. weakly ij-closed if and only if the projection � is weakly ij-closed, where �, � =
1, 2. 

Lemma 2.21. [6] In space (�, ��, ��) if ' ∈ �*, then �� − +-(') = �* − +-(') , where �, � = 1, 2.  

Theorem 2.22. The F.W. ij-closed bitopological space (�, ��, ��) over bitopological space 

(�, ��, ��) is weakly ij-closed, where �, � = 1, 2. 
Proof. Assume that � is a F.W. weak ij-closed bitopological space over B, then the projection �� ∶
 � →  �  exist and its weakly ij-closed. Let � ∈  �(�) and let ' be a �"-open set containing M� 

in �. Now, by lemma (2.21) �* − +- e� − �* − +-(')g = �� − +- e� − �* − +-(')g and hence by 

theorem [2.1٢] and since � is ij-closed, we have ij-cl �(� −  �* − +-('))  ⊂  �[�� − +-(� −  �* −
+-(')]. Now since � ∉  �[�� − +-(� −  �* − +-(')],  � ∉  �� − +- �(� − �*-+-(')) and thus there 

exists an !"-open nbd N of � in � such that !*-+-(N)  ∩  �(� − �* − +-('))  =  � which implies 

that  M(hk�mn(o)) ∩ (� − �* − +-('))  =  � i.e., M(hk�mn(o))  ⊂ �* -cl(U), and thus � is weakly ij-

closed. 
A F.W. weakly ij-closed is not necessarily to be F.W. ij-closed and the following example show 

This. 

Example 2.23. Let ��, ��, �� and �� be any topologies and p : (�, ��, ��) → (�, ��, ��)  be a 

constant function, then p is weakly ij-closed for �, � = 1, 2 and (� ≠  �). Now, let � = � = qr. If 

�� or �� is the discrete topology on �, then � : (�, ��, ��) → (�, ��, ��)  given by �(�)  =  0, for 

all � ∈  �, is neither 12-closed nor 21-closed, irrespectively of the topologies ��, �� and �� (or 

��). 

 

Theorem 2.24. Let (�, ��, ��) be F.W. ij-bitopological space over bitopological space (�, ��, ��). 

Then (�, ��, ��) is F.W. ij-perfect if: 

(a) (�, ��, ��) is F.W. weakly ij-closed bitopological space, and 
(b) M� is ij-rigid, for each � ∈ �. 

Proof. Assume that � is a F.W. ij-bitopological space over B satisfying the conditions (a) and (b), 

then the projection �� ∶  � →  � exist. To prove that � is ij-perfect we have to show in view of 
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theorem [2.1٦] that � is ij-closed. Let � ∈  �� − +- �(%), for some non-null subset % of �, but � ∉
 � (�� − +-(%)). Then ℋ = {%} is a filter base on � and (ij-ad ℋ) ∩ M� = �. By ij-rigidity of M�, 

there is a �"-open set ' containing M� such that �* − +-(')  ∩  % =  �. By weak ij-closedness of 

�,  there exists an �"  –open nbd N  of b such that �(uk�mn(o))  ⊂ �* -cl(U), which implies that 

�(uk�mn(o))   ∩  % =  � , i.e., (�* − +-(N))  ∩  �(%) =  �,  which is impossible since � ∈  �� −
+- �(%). Hence � ∈  �(�� − +-(%)). So f is ij-closed. 

Definition 2.25.[11] A subset A in bitopological space (�, ��, ��) is called ij-H-set in � if and 

only if for each �"-open cover v of %, there is a finite sub collection ℬ of v such that % ⊂ ∪
{ �* − +-(') ∶  ' ∈  ℬ}, �, � = 1,2. % is called a pairwise-H-set if and only if it is a 12- and 21-H-

set. If % is an ij-H-set (pairwise-H-set) and % = �, then the space is called an ij-QHC (resp. 

pairwise QHC) space, where �, � = 1, 2. 

Lemma 2.26.[10] A subset % of a bitopological space (�, ��, ��) is an ij-H-set if and only if for 

each filter base ℱ on A, (�� − SU ℱ)  ∩  % ≠ �, where �, � = 1, 2. 
Proof. (⇒) Clear. 

(⇐) Let v  be a �" -open cover of x  such that the union of �* -closure of any finite                                 

Sub collection of v is not cover %. Then ℱ ={%\ ∪ℬ �*-cl(Β) : ℬ is finite sub collection of v}is a 

filter base on % and (ij-ad ℱ) ∩ % =  �. This contradiction so that % is ij-set.   

Theorem 2.27. If (�, ��, ��) is  F.W. ij-perfect bitopological space over bitopological space 

(�, ��, ��) and �∗ ⊂ � is an ij-H-set in �, then ��∗ is an ij-H-set in �, where �, � = 1, 2. 
Proof. Assume that � is a F.W. ij-perfect bitopological space over B, then the projection �� ∶
 � →  �  exist. Let ℱ be a filter base on M�∗ , then �(ℱ) is a filter base on �∗. Since �∗ is an ij-

H-set in �, �∗  ∩  �� − SU �(ℱ)  ≠ � by lemma (2.26). By theorem (2.10 (a)⇒(c)), �∗   ∩  �(�� −
SU (<))  ≠  �, so that M�∗  ∩ ij-ad (ℱ)≠  �. Hence by lemma (2.26), M�∗ is an ij-H-set in �. The 

converse of the above theorem is not true, is shown in the next example. 

Example 2.28. Let � = � = qr, �� and �� be the cofinite and discrete topologies on � and ��, 

�� respectively denote the indiscrete and usual topologies on �. Suppose � ∶  (�, �� , ��) →
(�, ��, ��) is the identity function. Each subset of either of (�, �� , ��) and  (�, ��, ��) is a 12-

set. Now, any non-void finite set % ⊂ � is 12-closed in �, but �(%) (i.e., A) is not 12-closed in � 

(in fact, the only 12-closed subsets of � are � and �). 

Definition 2.29. A function L ∶  (�, ��, ��)  → (�, !�, !�) is said to be almost ij-perfect if for each 

ij-H-set y in N, L��(y) is an ij-H-set in �, where �, � = 1, 2. 

Definition 2.30. The F.W. ij-bitopological space (�, ��, ��) over bitopological space  (�, ��, ��) 

is called F.W. almost ij-perfect if and only if the projection � is almost ij-perfect, where �, � =
1, 2. By analogy to theorem (2.16), a sufficient condition for a function to be almost ij-perfect, is 
proved as follows. 
 

Theorem 2.31. Let (�, ��, ��) be F.W. ij- bitopological space  over bitopological space  

(�, ��, ��) such that: 
(a) ��is ij-rigid, for each � ∈  �, and 
(b) (�, ��, ��) is F.W. weakly ij-closed bitopological space. 

Then (�, ��, ��) is F.W. almost ij-perfect bitopological space. 
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Proof. Assume that � is a F.W. ij-bitopological space over �, then the projection �� ∶  � →  �  

exist and it is ij-continuous. Let �∗ be an ij-H-set in B and let ℱ be a filter base on ��∗ . Now �(ℱ) 

is a filter base on �∗  and so by theorem (2.26), (�� − SU �(ℱ))  ∩ �∗  ≠  �.  Let � ∈  [�� −
SU �(ℱ)]  ∩ �∗. Suppose that ℱ has no ij-ad point in M�∗ so that (ij-ad (ℱ)) ∩ ��= �. Since �� 

is ij-rigid, there exists an < ∈ ℱ and a �"-open set ' containing �� such that < ∩  �* − +-(')  =
 �. By weak ij-closedness of �, there is a �"-open nbd N of � such that �(uk�mn(o)) ⊂  �* − +-(') 

which implies that �(uk�mn(o)) ∩  < =  �, i.e., �*-+-(N)  ∩  �(<) =  �, which is a contradiction. 

Thus by theorem (2.26), ��∗  is an ij-H-set in � and hence � is almost ij-perfect. 
We now give some applications of ij-perfect functions. The following characterization theorem 

for an ij-continuous function is recalled to this end. 

Theorem 2.32. A bitopological space (�, ��, ��) is F.W. ij-bitopological space over bitopological 

space  (�, ��, ��). if and only if �(�� − +-(%))  ⊂  �� − +-(�(%)), for each % ⊂ �, where �, � =
1, 2. 
Proof. (⇒) Assume that � is a F.W. ij-bitopological space over B, then the projection �� ∶  � →
 �  exist and it is ij-continuous. Suppose that � ∈  �� − +-(%) and N is �"-open nbd of L(�). Since 

� is ij-continuous, there exists an �"-open nbd ' of � such that �(�* − +-(')) ⊂  �* − +-(N). Since 

�* - +- (') ∩ % ≠ �,  then �* - +-(N)  ∩  �(%) ≠ � . So, �(�)  ∈  �� − +-(�(%)).  This shows 

zℎSz �(�� − +-(%)) ⊂ �� − +-(�(%)). 
(⇐) Clear. 

Theorem 2.33. Let (�, ��, ��) be a F.W. ij-perfect bitopological space over bitopological space  

(�, ��, ��). Then �\ preserves ij-rigidity, where �, � = 1, 2. 
Proof. Assume that � is a F.W. ij-bitopological space over B, then the projection �� ∶  � →  �  

exist and it is ij-continuous. Let % be an ij-rigid set in � and let ℱ be a filter base on � such that 

�\ ∩ (ij- ad(ℱ)) = �. Since � is ij-perfect and % ∩  �(�� − SU(ℱ)) = � by theorem (2.10 (a) ⇒ (c)) 

we get % ∩ (�� − SU �(ℱ))  =  �. Now A being an ij-rigid set in �, there exists an < ∈ ℱ such 

that % ∩ �� − +-�(<) = �. Since � is ij-continuous, by theorem (2.32) it follows that % ∩  �(�� −
+-(<))  =  �. Thus �\ ∩  (�� − +-(<))  =  �. This proves that �\ is ij-rigid. 

In order to investigate for the conditions under which a F.W. almost ij-perfect bitopological 

space may be F.W. ij-perfect bitopological space, we introduce the following definition. 

Definition 2.34. A function L: (�, ��, ��)  → (�, !�, !�) is said to be ��∗-continuous if and only if 

for any !*-open nbd N of L(�), there exists a �"-open nbd ' of � such that L(�*-+-(')) ⊂ !"-

+-(N) , where �, � = 1, 2. 

Definition 2.35. The F.W. ij-bitopological space (�, ��, ��) over bitopological space  (�, ��, ��) 

is called F.W. ��∗-bitopological space if and only if the projection � is ��∗-continuous, where 

�, � = 1, 2. 
The relevance of the above definition to the characterization of F.W. ij-perfect bitopological 

space is quite apparent from the following result. 

 

Definition 2.36. A bitopological space (�, ��, ��) is said to be pairwise Urysohn space if for 

�, ` ∈  � with � ≠  `, there are �"-open nbd ' of x and �*-open nbd N of ` such that �* −
+-(') ∩ �" − +-(N) = �, where �, � = 1, 2. 



9

1234567890 ‘’“”

IHSCICONF2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1003 (2018) 012063  doi :10.1088/1742-6596/1003/1/012063

 

Theorem 2.37. If (�, ��, ��) is F.W. ��∗-bitopological space on a pairwise Urysohn space 

(�, ��, ��) , then it is F.W. ij-perfect bitopological space if and only if for every filter base ℱ on 

�, if �(ℱ)
"*�CDE
F⎯⎯⎯H � wher � ∈ �, then �� − SU ℱ ≠ �, where �, � = 1, 2. 

Proof. (⇒⇒) Let (M, ��, ��)  be a F.W. � �∗ -bitopological space on a pairwise Urysohn space 
(B, ��, ��), then there is a ��∗ -continuous projection function �: (M, ��, ��) → (B, ��, ��) and  

�(ℱ)
"*�CDE.  
F⎯⎯⎯⎯H � where � ∈ �, for a filter base ℱ on �. Then �~(ℱ)

  "*�R"�.   
F⎯⎯⎯⎯⎯H �� . Since ℱ is finer 

than �~(ℱ), �� ∩ �� − SU ℱ ≠ �, so that �� − SU ℱ ≠ �. 

(⇐): Suppose that for every filter base ℱ on �, �(ℱ)
  "*�CDE.  
F⎯⎯⎯⎯⎯H � where � ∈ � implies �� − SU ℱ ≠

�. Let ? be a filter base on � such that ?
  "*�CDE.  
F⎯⎯⎯⎯⎯H �, and suppose that ?∗ is a filter base on � such 

that ?∗ is finer than �?. Then �(?∗) is finer than ?. So �(?∗)
  "*�CDE.  
F⎯⎯⎯⎯⎯H �. Hence �� − SU ?∗ ≠ �. 

Let � ∈ � such that � ≠ �. Then since � is pairwise Urysohn, there exist a �"-open nbd ' of � and 

�* -open nbd N  of �  such that e�* − +- (')g ∩ ��" − +-(N)� = � . Since �(?∗)
  "*�CDE.  
F⎯⎯⎯⎯⎯H � , there 

exist a @ ∈ ?∗  such that �(@) ⊂ �* − +-('). Now, since � is ��∗ -continuous, corresponding to 

each � ∈ ��  there is a �" -open nbd � of �  such that � e�* − +-(�)g ⊂ �" − +-(N). Thus �* −
+-(�) ∩ @ = �. It follows that �� ∩ �� − ?∗ = �, for each � ∈ � − {�}. Consequently �� ∩ �� −
SU ?∗ ≠ �, and � is ij- perfect and hence (M, ��, ��) is F.W. ��∗-bitopology. 

Definition 2.38. [9] A bitopological space (�, ��, ��) is said to be locally ij-QHC bitopological 

space if and only if for every � ∈ �, there is a �"-open nbd of �, which is an ij-H-set, where 

�, � = 1, 2. 

Lemma 2.39. [10] In a pairwise Urysohn bitopological space  (�, ��, ��) an ij-H-set is ij-closed, 

where �, � = 1, 2. 

Corollary 2.40. Let (�, ��, ��) be a F.W. ��∗-bitopological space and ij-QHC on a pairwise 

Urysohn bitopological space (�, ��, ��), then (�, ��, ��) is F.W. ij-perfect bitopological space, 

where �, � = 1, 2. 

Theorem 2.41. Let (�, ��, ��) be a F.W. ��∗-bitopological space and locally ij-QHC on a Urysohn 

space (�, ��, ��), then (�, ��, ��) is F.W. ��∗-bitopological space if and only if it is F.W. almost 

ij-perfect, where �, � = 1, 2. 
Proof. (⇒) If (M, ��, ��) is F.W. ��∗-bitopological space, then by corollary (2.40.), it is F.W. almost 

ij-perfect. 

(⇐) Let (M, ��, ��) is F.W. almost ij-perfect, then there exist almost ij-perfect projection function 

�: (M, ��, ��) → (B, ��, ��), and let ℱ be any filter base on � and let �(ℱ)
  "*�CDE.  
F⎯⎯⎯⎯⎯H � where � ∈ �. 

There are an ij-H-set �∗  in � and �"-open nbd N of   � such that � ∈ N ⊆ �∗ . Let ℋ = {�* −
+-(') ∩ �(<) ∩ �∗; < ∈  ℱ and ' is a �"-open nbd of �}. By lemma (2.39), �∗ is ij-closed and 

hence no member of ℋ is void. In fact, if not, let for some �"-open nbd ' of � and some < ∈ ℱ,   

�* − +-(') ∩ �(<) ∩ �∗ = � . Then � = ' ∩ N  since ` ∈ ' ∩ N ∈ �"  and �* − +-(�) = �� −
+-(�) ⊂ �� − +-(�∗) = �∗  by lemma (2.21). Now � = �* − +-(�) ∩ �(<) ∩ �∗ = �* −

+-(�) ∩ �(<), which is not possible, since �(ℱ)
  "*�CDE.  
F⎯⎯⎯⎯⎯H �. Thus ℋ is filter base on �, and is 

clearly finer than �(ℱ), so that ℋ
  "*�CDE.  
F⎯⎯⎯⎯⎯H �. Also ? = {�� ∩ <: � ∈ ℋ and < ∈ ℱ} is clearly a 

filter on ��∗ . Since � is almost ij-perfect, ��∗  is an ij-H-set and hence �� − SU ? ∩ ��∗ ≠ � . 

Thus �� − SU ℱ ≠ � . Thus �  is ij-perfect and by theorem (2.37) (M, ��, ��)  is F.W. ��∗ -
bitopological space. 



10

1234567890 ‘’“”

IHSCICONF2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1003 (2018) 012063  doi :10.1088/1742-6596/1003/1/012063

 

We now give some application of F.W. ij-perfect bitopological space. The following 

characterization theorem for a F.W. ij-bitopological space is recalled to this end. 

Theorem 2.42. A F.W. set � over � is F.W. ij-bitopological space if and only if �(��-+-(%)) ⊂
��-+-�(%) for each % ⊂ �, where �, � = 1, 2. 
Proof: (⟺) Since � is a F.W. set over �, then there is projection � where �: � → �. Now we 

have to prove that � is ij-continuous. But it directly by theorem (2.32). 

Lemma 2.43. It was proved in (Sen and Nandi 1993) [12] that a bitopological space  (�, ��, ��) is 

pairwise Hausdorff if and only if {�} = �� − +-{�}, for each � ∈ �. It then follows immediately 

in view of theorem (2.14).  

Theorem 2.44. If (�, ��, ��) is a F.W. ij-perfect surjection bitopological space with � is a 

pairwise Hausdorff space on a bitopological space (�, ��, ��), Then � is also pairwise Hausdorff. 

Proof: Let ��,  �� ∈ � such that �� ≠ ��. Since � is onto, then ���, ��� ∈ � and since � is one to 

one, then ��� ≠ ���. Since � is ij-perfect, so by theorem (2.14) it is ij-closed. By lemma (2.43) 

we have { ���} = �� − +-{���} and { ���} = �� − +-{���}. Since � is pairwise Hausdorff. Now 

�(�� − +-{ ���}) = �� − +-{��} and �(�� − +-{ ���}) = �� − +-{��} since � is ij-closed. This mean 

�� = �� − +-{��} and �� = �� − +-{��}. Hence � is pairwise Hausdorff.   
Our next theorem give a characterization of an important class of F.W. bitopological space viz. 

the ij-QHC spaces in terms of F.W. ij-perfect bitopological space.  

Theorem 2.45. For a bitopological space (�, ��, ��), the following statement are equivalent: 

a) � is ij-QHC 
b) The F.W. (M, ��, ��) is ij-perfect bitopological space with constant projection over �∗ 

where �∗ is a singleton with two equal bitopologies viz. the unique bitopology on �∗. 
c) The F.W. (B × M, ��, ��) is ij-perfect bitopological space over (�, ��, ��), where              

�" = �" × �* . �, � = 1, 2 and � ≠ �. 
Proof: (a)⇒⇒(b) Let �: (M, ��, ��) →(�∗, �� , ��) is a constant projection over �∗  where �∗  is a 

singleton with two equal bitopologies viz the unique bitopology on �∗. � is clearly ij-closed. Also, 

��∗, i.e. � is obviously ij-rigid since �∗ is ij-QHC. Then by theorem (2.16) � is ij-perfect. 

(b)⇒(a) Follows from theorem (2.33). 

 

(a)⇒(C) Suppose that (B × M, ��, ��) is F.W. bitopological space over (�, ��, ��) where �" =
�" × �*, �, � = 1, 2 and � ≠ �, then there is a projection � = �": (B × M, ��, ��) → (�, ��, ��). We 

show that  �" is ij- closed and for each � ∈ �, ��  is ij-rigid in � × �. Then the result will follow 

from theorem (2.16). Let % ⊂ � × �  and S ∉ �"��� − +-(%)� . For each � ∈ �, (S, �) ∉ �� −
+-(%), so that there exist a �* -open nbd @�  of S  and a �" -open nbd ��  of �  such that [�" −
+-(@� × ��)] ∩ % = �. Since � is ij-QHC, {S} × � is a ij –H-set in � × �. Thus there exist 

finitely many elements ��, ��, �>, … , �E with {S} × � ⊂ ⋃ �" − +-�@�� × ����.E
���  Now, S ∈

⋂ @�� = @E
���  which is a �"-open nbd of a such that (�" − +-(@) ∩ �"(%) = �. Hence S ∉ �� −

+-�"(%) and thus �� − +-�"(%) ⊂ ���� − +-(%)�. So � is ij-closed, by theorem (2.12). Next, let � ∈
�. To show that (� × �)� = �"

��(b) to be ij-rigid in � × �. Let ℱ be a filter base on � × � such 

that �"
��(b)∩ �� − SU ℱ = �. For each � ∈ �, (�, �) ∉ �� − SU ℱ. Thus there exist �*-open nbd 

'� of � in �, a �" −open nbd N�  of � in � and an <� ∈ ℱ such that �" − +-('� × N�) ∩ <� =
�. As show above, there exist finitely many elements ��, ��, �>, … , �E of � such that {�} ×
� ⊂ ⋃ �" − +-�'�� × N���.E

���  Putting ' = ⋂ '��
E
���  and choosing  < ∈ ℱ  with < ⊂
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⋂ <��
E
��� , we get {�} × � ⊂ ' × � ⊂ �*  such that �" − +-(' × �) ∩ < = � . Thus ��� −

+-(<)� ∩ [�"
��(b) ]= �. Hence �"

��(b) is ij-rigid in � × �.  

(c)⇒⇒(a) Taking �∗ = �, we have that � = �": �∗ × � ×→ �∗ is ij-perfect . Therefore by theorem. 

(2.27) �∗ × � is an ij-H-set and Hence � is ij-QHC. 
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