PAPER • OPEN ACCESS

FIBREWISE IJ-PERFECT BITOPOLOGICAL SPACES

To cite this article: Y.Y. Yousif and L.A. Hussain 2018 J. Phys.: Conf. Ser. **1003** 012063

View the [article online](https://doi.org/10.1088/1742-6596/1003/1/012063) for updates and enhancements.

Related content

- [Fibrewise soft ideal topological space](http://iopscience.iop.org/article/10.1088/1742-6596/1003/1/012050) Yousif Y Yousif and Mohammed A H Ghafel
- [On expansion of quantum quadratic](http://iopscience.iop.org/article/10.1070/IM2004v068n05ABEH000506) [stochastic processes into fibrewise Markov](http://iopscience.iop.org/article/10.1070/IM2004v068n05ABEH000506) [processes defined on von Neumann](http://iopscience.iop.org/article/10.1070/IM2004v068n05ABEH000506) [algebras](http://iopscience.iop.org/article/10.1070/IM2004v068n05ABEH000506) -
- F M Mukhamedov
- [THE LEWY EQUATION AND ANALYSIS](http://iopscience.iop.org/article/10.1070/RM1977v032n03ABEH001628) [ON PSEUDOCONVEX MANIFOLDS](http://iopscience.iop.org/article/10.1070/RM1977v032n03ABEH001628) G M Khenkin -

FIBREWISEIJ-PERFECT BITOPOLOGICAL SPACES

Y.Y.Yousif, L.A.Hussain

Department of Mathematics, College of Education for Pure Science (Ibn Alhaitham), Baghdad University, Baghdad yoyayousif@yahoo.com1, Liwaaalhashemy@gmail.com2

Abstract : The main purpose of this paper is to introduce a some concepts in fibrewise bitopological spaces which are called fibrewise ij , fibrewise ij -closed, fibrewise ij -compact, fibrewise ij-perfect, fibrewise weakly ij-closed, fibrewise almost ij -perfect, fibrewise ij^* -bitopological space respectively. In addition the concepts as ij contact point, ij-adherent point, filter, filter base, ij-converges to a subset, ij-directed toward a set, i j-continuous, ij-closed functions, ij-rigid set, ij-continuous functions, weakly ijclosed, ij-H-set, almost ij-perfect, ij*-continuous, pairwise Urysohn space, locally ij-QHC bitopological space are introduced and the main concept in this paper is fibrewise ij-perfect bitopological spaces. Several theorems and characterizations concerning with these concepts are studied.

Keywords : bitopological spaces, closed bitopological space, filter base, Fibrewise

IJ-Perfect Bitopological Spaces

1. Introduction and Preliminaries.

In order to begin the category in the classification of fibrewise (briefly, F.W.) sets over a given set, named the base set, which say B. A F.W. set over B consists of a set M with a function p: $M \rightarrow$ B, that is named the projection. The fibre over b for every point b in B is the subset $M_b = p^{-1}(b)$ of M. Perhaps, fibre will be empty since we do not require p is surjectve, also, for every subset B∗ of B, we consider $M_{B^*} = p^{-1}(B^*)$ as a F.W. set over B^{*} with the projection determined by p. The alternative notation of M_{B^*} is sometime referred to as M | B[∗]. We consider the Cartesian product $B \times T$, for every set T, as a F.W. set over B by the first projection.

The bitopological spaces were first created by Kelly $\lceil \sqrt{y} \rceil$ in 1963 and after that a large number of researches have been completed to generalize the topological ideas to bitopological setting. A set M with two topologies τ_1 and τ_2 is called bitopological space [7] and is denoted by (M, τ_1, τ_2) . By τ_i -open (resp., τ_i -closed), we shall mean the open (resp., closed) set with respect to τ_i in M, where i = 1,2. A is open (resp., closed) if it is both τ_1 -open (resp., τ_1 -closed) and τ_2 -open (resp., τ_2 -closed) in M. As well as, we built on some of the results in [1, 8, 13, 14, 15, 16, 17, 18]. For other notations or notions which are not mentioned here we go behind closely I. M. James [5], R. Engelking $\lceil 2 \rceil$ and N. Bourbaki $\lceil 3 \rceil$.

1 Content from this work may be used under the terms of the[Creative Commons Attribution 3.0 licence.](http://creativecommons.org/licenses/by/3.0) Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd

Definition:1.1. [5] If *M* and *N* with projections p_M and p_N , respectively, are F.W. sets over *B*, a function $\varphi: M \to N$ is named F.W. function if $p_N o \varphi = p_M$, or $\varphi(M_b) \subset N_b$ for every $b \in B$.

Definition: 1.2. [5] Let (B, Λ) be a topological space. The F.W. topology on a F.W. set M over B mean any topology on M makes the projection p is continuous.

Definition: 1.3. [5] The F.W. function $\varphi: M \to N$, where M and N are F.W. topological spaces over B is named:

Continuous if for every $x \in M_R$; $b \in B$, the inverse image of every open set of $\varphi(x)$ is an open set of x .

Open if for every $x \in M_R$; $b \in B$, the direct image of every open set of x is an open set of $\varphi(x)$.

Definition:1.4. [5] The F.W. topological space (M, τ) over (B, Λ) is named F.W. closed, (resp. F.W. open) if the projection p is closed (resp. open).

Definition: 1.5. [7] The triple (M, τ_1, τ_2) where *M* is a non-empty set and τ_1 and τ_2 are topologies on M is named bitopological spaces.

Definition:1.6. [7] A function φ : $(M, \tau_1, \tau_2) \rightarrow (N, \sigma_1, \sigma_2)$ is said to be τ_i -continuous (resp. τ_i open and τ_i -closed), if the functions φ : $(M, \tau_i) \to (N, \sigma_i)$ are continuous (resp. open and closed), φ is named continuous (resp. open and closed) if it is τ_i -continuous (resp. τ_i -open and τ_i -closed) for every $i = 1,2$.

Definition:1.7. [13] Let $(B, \Lambda_1, \Lambda_2)$ be a bitopological space. The F.W. bitopology on a F.W. set M over B mean any bitopology on M makes the projection p is continuous.

Definition 1.8. [6] A point x in (M, τ_1, τ_2) is called an ij-contact point of a subset $A \subseteq M$ if and only if for every τ_i -open nbd U of x, $(\tau_i_{cl}(U)) \cap A \neq \emptyset$. The set of all ij-contact points of A is called the ij-closure of A and is denoted by $ij - cl(A)$. $A \subset M$ is called ij-closed if and only if $A = ij - cl(A)$, where $i, j = 1, 2, (i \neq j)$.

Definition 1.9 [3] A filter $\mathcal F$ on a set M is a nonempty collection of nonempty subsets of M with the properties:

(a) If $F_1, F_2 \in \mathcal{F}$, then $F_1 \cap F_2 \in \mathcal{F}$. (b) If $F \in \mathcal{F}$ and $F \subseteq F^* \subseteq M$, then $F^* \in \mathcal{F}$.

Definition 1.10. [3] A filter base $\mathcal F$ on a set M is a nonempty collection of nonempty subsets of M such that if $F_1, F_2 \in \mathcal{F}$ then $F_3 \subset F_1 \cap F_2$ for some $F_3 \in \mathcal{F}$.

Definition 1.11. [3] If $\mathcal F$ and $\mathcal G$ are filter bases on M, we say that $\mathcal G$ is finer than $\mathcal F$ (written as $\mathcal F$ < *G*) if for each $F \in \mathcal{F}$, there is $G \in \mathcal{G}$ such that $G \subseteq F$ and that \mathcal{F} meets \mathcal{G} if $F \cap G \neq \varphi$ for every $F \in \mathcal{F}$ and $G \in \mathcal{G}$.

Definition 1.12. [10] A filter base $\mathcal F$ on M i s said to be ij-converges to a subset A of M (written as $\mathcal{F} \xrightarrow{i f - con}$ A) if and only if for every τ_i -open cover U of A, there is a finite subfamily \mathcal{U}_0 of U and a number F of F such that $F \subset \bigcup \{\tau_j - cl(U) : U \in \mathcal{U}_0\}$. If $x \in M$, we say $\mathcal{F} \xrightarrow{i \to \infty} x$ if and only if $\mathcal{F} \xrightarrow{i j-con} \{x\}$ or equivalently, τ_i -closure of every τ_i -open nbd of x contains some members of $\mathcal F$.

Definition 1.13. [2] A function $f: (M, \tau_1, \tau_2) \rightarrow (N, \sigma_1, \sigma_2)$ is called ij-continuous if and only if for any σ_i -open nbd V of f (x), there exists a τ_i -open nbd U of x such that $f(\tau_i-\text{cl}(U)) \subset \sigma_i$ $cl(V)$, where $i, j = 1, 2$.

Definition 1.14. [2] A point x in a bitopological space (M, τ_1, τ_2) is called an ij-adherent point of a filter base $\mathcal F$ on M if and only if it is an ij-contact point of every number of $\mathcal F$. The set of all ijadherent points of F is called the ij-adherence of F and is denoted by ij-ad F, where $i, j = 1, 2$.

In this section, we introduce the notion of ij-perfect bitopological, ij-rigidity spaces and investigate some of their basic properties.

Definition 2.1. Let $(B, \Lambda_1, \Lambda_2)$ be a bitopological space. The F.W. ij-bitopology on a F.W. set M over *B* mean any bitopology on *M* for which the projection *p* is ij-continuous, where $i, j = 1, 2$.

Definition 2.2. A function $f : (M, \tau_1, \tau_2) \rightarrow (N, \sigma_1, \sigma_2)$ is called ij-closed if the image of each ij-closed set in *M* is ij-closed set in *N*, where $i, j = 1, 2$.

Theorem 2.3. A function f : (M, τ_1, τ_2) → (N, σ_1, σ_2) is ij-closed if and only if $ij - cl(f(A))$ ⊂ $f(ij - cl(A))$ for each $A \subseteq M$, where $i, j = 1, 2$.

Proof. (\Rightarrow) Suppose that f is ij-closed. Let $A \subset M$, since f is ij-closed then $f(i) - cl(A)$ is ij-

closed set in N, since ij – cl(A) is closed in M, so, ij – cl(f(A)) $\subset f(ij - cI(A))$.

(∈) Suppose that A is ij-closed set in M, so $A = i$ j – cl(A), but we have ij – cl(f(A)) ⊂ f(ij –

cl(A)), thus $ij - cl(f(A)) \subset f(A)$, so $f(A)$ is ij-closed in M, therefore f is ij-closed.

Definition 2.4. A filter base $\mathcal F$ on bitopological space (M, τ_1, τ_2) is said to be *ij* $-\text{converges}$ to a point $x \in M$ (written as $\mathcal{F} \xrightarrow{i f \text{ even}} x$) if and only if every τ_i -open nbd U of x contains some elements of \mathcal{F} , where $i, j = 1, 2$.

Definition 2.5. A filter base $\mathcal F$ on bitopological space (M, τ_1, τ_2) is said to be ij-directed toward a set $A \subseteq M$, written as $\mathcal{F} \xrightarrow{i,j-d} A$, if and only if every filter base \mathcal{G} finer than \mathcal{F} has an ij –adherent point in A, i.e. $(ij - ad \mathcal{G}) \cap A \neq \varphi$. We write $\mathcal{F} \xrightarrow{i j - d} x$ to mean $\mathcal{F} \xrightarrow{i j - d} \{x\}$, where $x \in M$, where $i, j = 1, 2$.

Theorem 2.6. A point x in bitopological space (M, τ_1, τ_2) is an ij-adherent point of a filter base $\mathcal F$ on *M* if and only if there exists a filter base \mathcal{F}^* finer than \mathcal{F} such that $\mathcal{F}^* \xrightarrow{i \hat{j}-con} x$, where $i, i = 1, 2.$

Proof. (\Rightarrow) Let x be an ij -adherent point of a filter base $\mathcal F$ on M , so it is an ij -contact point of every number of *F*, then for every τ_i -open nbd U of x, we have $\tau_i - cl(U) \cap F \neq \varphi$ for every number F in F. And thus $\tau_i - cl(U)$ contains a some member of any filter base \mathcal{F}^* finer than \mathcal{F} , so that $\mathcal{F}^* \xrightarrow{i j - con} x$.

(←) Suppose that x is not an ij -adherent point of a filter base $\mathcal F$ on M , so there exist $F \in \mathcal F$ such that x is not an ij -contact of F. Then there exists an τ_i -open nbd U of x such that $\tau_i - cl(U)$ \cap $F = \varphi$. Denote by \mathcal{F}^* the family of sets $F^* = F \cap (M - \tau_i \text{-}cl(U))$ for $F \in \mathcal{F}$, then the sets F^* are nonempty. Also \mathcal{F}^* is a filter base and indeed it is finer than \mathcal{F} , because given $F_1^* = F_1 \cap (M - \tau_1)$ $cl(U)$) and $F_2^* = F_2 \cap (M - \tau_i - cl(U))$, there is an $F_3 \subseteq F_1 \cap F_2$ and this gives $F_3^* = F_3 \cap (M - \tau_i - cl(U))$ $cl(U)$) \subseteq $F_1 \cap F_2 \cap (M-\tau_i-cl(U)) = F_1 \cap (M-\tau_i-cl(U)) \cap F_2 \cap (M-\tau_i-cl(U))$, by construction \mathcal{F}^* not ij-convergent to x. This is a contradiction, and thus x is an ij-adherent point of a filter base F on M .

Theorem 2.7. Let *F* be a filter base on bitopological space (M, τ_1, τ_2) , and a point $x \in M$, then $\mathcal{F} \xrightarrow{i j - c n} x$ if and only if $\mathcal{F} \xrightarrow{i j - d} x$, where $i, j = 1, 2$.

Proof. (\Leftarrow **) If** *F* does not ij-converge to *x*, then there exists a τ_i -open nbd U of *x* such that $F \not\subset \tau_i$ $cl(U)$, for all $F \in \mathcal{F}$. Then $\mathcal{G} = \{(M-\tau_i-cl(U) \cap F : F \in \mathcal{F}\}\)$ is a filter base on M finer than \mathcal{F} , and clearly $x \notin ij$ -adherence of G. Thus F cannot be ij-directed towards x which is contradiction. So $\mathcal F$ is i-converge to x .

(⇒**)** Clear.

Definition 2.8. A function $f : (M, \tau_1, \tau_2) \rightarrow (N, \sigma_1, \sigma_2)$ is said to be ij-perfect if and only if for each filter base $\mathcal F$ on $f(M)$, ij-directed towards some subset A of $f(M)$, the filter base $f^{-1}(\mathcal F)$ is ij-directed towards $f^{-1}(A)$ in M. f is called pairwise ij-perfect if and only if f is 12 and 21perfect, where $i, j = 1, 2$.

Definition 2.9. The F.W. bitopological space (M, τ_1, τ_2) over bitopological space $(B, \Lambda_1, \Lambda_2)$ is called F.W. ij-perfect if and only if the projection p is ij-perfect, where $i, j = 1, 2$. In the following theorem we show that only points of N could be sufficient for the Subset A in definition [2.8] and hence ij-direction can be replaced in view of theorem [2.6] by ijconvergence.

Theorem 2.10. Let (M, τ_1, τ_2) be a F.W. bitopological space over bitopological space $(B, \Lambda_1, \Lambda_2)$. Then the following are equivalent:

(a) (M, τ_1, τ_2) is F.W. ij-perfect bitopological space.

(b) For each filter base $\mathcal F$ on $p(M)$, which is ij-convergent to a point b in B , $M_{\mathcal F} \xrightarrow{i j-d} M_b$.

(c) For any filter base $\mathcal F$ on M , ij-ad $p(\mathcal F) \subset p$ (ij-ad $\mathcal F$).

Proof. (a) \Rightarrow (b) Follows from theorem (2.7).

(b) \Rightarrow (c) Let $b \in$ ij-ad $p(F)$. Then by theorem (2.6), there is a filter base G on $p(M)$ finer than p (*F*) such that $\xrightarrow{i_j-con} b$. Let $\mathcal{U} = \{M_G \cap F : G \in \mathcal{G} \text{ and } F \in \mathcal{F}\}\.$ Then \mathcal{U} is a filter base on M finer than M_G . Since $G \xrightarrow{i j-d} b$, by theorem (2.7) and p is ij-perfect, $M_G \xrightarrow{i j-d} M_b$. U being finer than M_G , we have $M_b \cap (i$ j-ad $U \neq \varphi$. It is then clear that $M_b \cap (i$ j-ad $\mathcal{F}) \neq \varphi$. Thus $b \in p$ (ij – $ad F$).

(c) \Rightarrow (a) Let F be a filter base on $p(M)$ such that it is ij-directed towards some subset A of $p(M)$. Let G be a filter base on M finer than M_T . Then $p(G)$ is a filter base on $p(M)$ finer than F and hence $A \cap (ij - ad \, p(g)) \neq \varphi$. Thus by (c) $A \cap p(ij - ad \, G) \neq \varphi$ so that $\overline{M_A} \cap (ij - ad \, G) \neq \varphi$ φ . This shows that $M_{\mathcal{F}}$ is ij-directed towards M_A . Hence p is ij-perfect.

Definition 2.11. The function $f: (M, \tau_1, \tau_2) \rightarrow (N, \sigma_1, \sigma_2)$ is called ij-compact function if it is ij –continuous, ij –closed and for each filter base $\mathcal F$ in N then $f^{-1}(\mathcal F)$ is filter base in M , where $i, j = 1, 2$.

Definition 2.12 The F.W. *ij* -bitopological space (M, τ_1, τ_2) over bitopological space $(B, \Lambda_1, \Lambda_2)$ is called F.W. *ij* $-\text{compact}$ if and only if the projection p is *ij* $-\text{compact}$, where *i*, *j* = 1, 2.

For example the bitopological product $B \times_B T$ is F.W. ij-compact over B, for all ij -compact space T, where $i, j = 1, 2$.

Definition 2.13. The F.W. ij-bitopological space (M, τ_1, τ_2) over bitopological space $(B, \Lambda_1, \Lambda_2)$ is called F.W. ij-closed if and only if the projection p is ij-closed, where $i, j = 1, 2$.

Theorem 2.14. If the F.W. bitopological space (M, τ_1, τ_2) over a bitopological space $(B, \Lambda_1, \Lambda_2)$ is ij-perfect, then it is ij-closed, where $i, j = 1, 2$.

Proof. Assume that M is a F.W. ij perfect bitopological space over B, then the projection p_M : $M \to B$ is ii-perfect, to prove that it is ii-closed, by (2, 10 (a)⇒(c)) for any filter base $\mathcal F$ on M iiad p(F) ⊂ p(ij-ad (F)), by theorem (2. 12) f is ij-closed if ij – cl $f(A) \subset f(i) - cI(A)$ for all $A \subset I$ M, therefore p is ij-closed where $\mathcal{F} = \{A\}$.

Definition 2.15. A subset A of bitopological space (M, τ_1, τ_2) is said to be ij-rigid in M if and only if for each filter base F on M with $(ij - ad F) \cap A = \varphi$, there is τ_i -open set U and $F \in F$ such that $A \subset U$ and τ_i - $cl(U) \cap F = \varphi$, or equivalently, if and only if for each filter base $\mathcal F$ on *M* whenever $A \cap (ij - ad \mathcal{F}) = \varphi$, then for some $F \in \mathcal{F}, A \cap (ij - cl(F)) = \varphi$, where $i, i = 1, 2.$

Theorem 2.16. If (M, τ_1, τ_2) is F.W. ij-closed bitopological space over bitopological space (B, Λ_1) , (A_2) such that each M_b where $b \in B$ is ij-rigid in M, then (M, τ_1, τ_2) is F.W. ij-perfect, where $i, i = 1, 2.$

Proof. Assume that *M* is a F.W. ij-closed bitopological space over B, then the projection p_M : $M \rightarrow B$ exist, to prove that it is ij-perfect. Let $\mathcal F$ be a filter base on $p(M)$ such that $\mathcal F \xrightarrow{i,j \text{ even}} b$ in B, for some $b \in B$. If G is a filter base on M finer than the filter base M_T , then $p(G)$ is a filter base on B, finer than F. Since $\mathcal{F} \xrightarrow{i_{j}-d} b$ by theorem (2.6), $b \in i_{j}$ -ad p(G), i.e., $b \in \bigcap \{ij-\}$ ad $p(G): G ∈ G$ } and hence { $b ∈ \bigcap \{p(i) - ad(G) : G ∈ G\}$ by theorem (2.12), since p is ijclosed. Then $M_b \cap i$ j-ad $(G) \neq \varphi$, for all $G \in \mathcal{G}$. Hence for all $U \in \tau_i$ with $M_b \subset U$, τ_i -cl(U) \cap $G \neq \varphi$, for all $G \in \mathcal{G}$. Since M_b is ij-rigid, it then follows that $M_b \cap (i j$ -ad $\mathcal{G}) \neq \varphi$. Thus M_f $\overrightarrow{ij-d}$ M_b. Hence by theorem 2.10 (b)⇒(a), p is ij-perfect.

Theorem 2.17. If F.W. ij-bitopological space (M, τ_1, τ_2) over bitopological space $(B, \Lambda_1, \Lambda_2)$ is ijperfect, then it is ij-closed and for each $b \in B$, M_b is ij-rigid in M, where i, j = 1, 2. **Proof.** Assume that M is a F.W. ij-bitopological space over B, then the projection $p_M : M \to B$ exist and it is ij-continuous. Since p is an ij-perfect so it is ij-closed. To prove the other part, let $b \in B$, and suppose *F* is a filter base on *M* such that (ij-ad *F*) ∩ $M_h = \varphi$. Then $b \notin p$ (ij-ad *F*).

Since p is ij-perfect, by theorem (2.10 (a)⇒(c)) b \notin ij – ad p($\mathcal F$). Thus there exists an $F \in \mathcal F$ such that $b \notin$ ij-ad $p(F)$. There exists an Λ_i -open nbd V of b such that $\Lambda_i - cl(V) \cap p(F) = \varphi$. Since p is ij-continuous, for each $x \in M_b$ we shall get a τ_i -open nbd U_x of x such that $p(\tau_i - cl(U_x) \subset$ $A_i-cl(V) \subset B-p(F)$. Then $p(\tau_i-cl(U_x) \cap p(F) = \varphi$, so that $\tau_i-cl(U_x) \cap F = \varphi$. Then $x \notin$ ij-cl(F), for all $x \in M_h$, so that $M_h \cap (i_j$ -cl(F)) = φ , Hence M_h is ij-rigid in M.

Corollary 2.18. A F.W. ij-bitopological space (M, τ_1, τ_2) over bitopological space (B, A_1, A_2) is ij-perfect if and only if it is ij-closed and each M_b , where $b \in B$ is ij-rigid in \tilde{M} , where $i, j = 1, 2$.

Next we show that the above theorem remains valid if F.W. ij-closedness bitopological space replaced by a strictly weak condition which we shall called F.W. weak ij-closedness bitopological space. Thus we define as follows.

Definition 2.19. A function $f : (M, \tau_1, \tau_2) \to (N, \sigma_1, \sigma_2)$ is said to be weakly ij-closed if for every $y \in f(M)$ and every τ_i -open set U containing $f^{-1}(y)$ in M, there exists a σ_i open nbd V of y such that f^{-1} $(\sigma_i$ -cl(V)) $\subset \tau_i$ -cl(U), where $i, j = 1, 2$.

Definition 2.20. The F.W. ij-bitopological space (M, τ_1, τ_2) over bitopological space $(B, \Lambda_1, \Lambda_2)$ is called F.W. weakly ij-closed if and only if the projection p is weakly ij-closed, where $i, j =$ 1, 2.

Lemma 2.21. [6] In space (M, τ_1, τ_2) if $U \in \tau_i$, then $ij - cl(U) = \tau_i - cl(U)$, where $i, j = 1, 2$.

Theorem 2.22. The F.W. ij-closed bitopological space (M, τ_1, τ_2) over bitopological space (B, A_1, A_2) is weakly ij-closed, where $i, j = 1, 2$.

Proof. Assume that M is a F.W. weak ij-closed bitopological space over B, then the projection p_M : $M \rightarrow B$ exist and its weakly ij-closed. Let $b \in p(M)$ and let U be a τ_i -open set containing M_b in *M*. Now, by lemma (2.21) $\tau_i - cl(M - \tau_i - cl(U)) = ij - cl(M - \tau_i - cl(U))$ and hence by theorem [2.1 ζ] and since p is ij-closed, we have ij-cl $p(M - \tau_i - cl(U)) \subset p[i] - cl(M - \tau_i$ $cl(U)$]. Now since $b \notin p[i] - cl(M - \tau_i - cl(U)]$, $b \notin ij - cl(p(M - \tau_i-cl(U))$ and thus there exists an σ_i -open nbd V of b in B such that σ_i -cl(V) \cap $p(M - \tau_i - cl(U)) = \varphi$ which implies that $M_{(\sigma_i - cl(V))} \cap (M - \tau_i - cl(U)) = \varphi$ i.e., $M_{(\sigma_i - cl(V))} \subset \tau_i$ -cl(U), and thus p is weakly ijclosed.

A F.W. weakly ij-closed is not necessarily to be F.W. ij-closed and the following example show This.

Example 2.23. Let τ_1 , τ_2 , Λ_1 and Λ_2 be any topologies and p : $(M, \tau_1, \tau_2) \rightarrow (B, \Lambda_1, \Lambda_2)$ be a constant function, then p is weakly ij-closed for $i, j = 1, 2$ and $(i \neq j)$. Now, let $M = B = IR$. If Λ_1 or Λ_2 is the discrete topology on B, then $p : (M, \tau_1, \tau_2) \to (B, \Lambda_1, \Lambda_2)$ given by $p(x) = 0$, for all $x \in M$, is neither 12-closed nor 21-closed, irrespectively of the topologies τ_1 , τ_2 and Λ_2 (or Λ_1).

Theorem 2.24. Let (M, τ_1, τ_2) be F.W. ij-bitopological space over bitopological space $(B, \Lambda_1, \Lambda_2)$. Then (M, τ_1, τ_2) is F.W. ij-perfect if:

(a) (M, τ_1, τ_2) is F.W. weakly ij-closed bitopological space, and

(b) M_h is ij-rigid, for each $b \in B$.

Proof. Assume that M is a F.W. ij-bitopological space over B satisfying the conditions (a) and (b), then the projection $p_M : M \to B$ exist. To prove that p is ij-perfect we have to show in view of

theorem [2.1 ^T] that p is ij-closed. Let $b \in ij - cl p(A)$, for some non-null subset A of M, but $b \notin$ $p(ij - cl(A))$. Then $\mathcal{H} = \{A\}$ is a filter base on \tilde{M} and (ij-ad \mathcal{H}) $\cap M_b = \varphi$. By ij-rigidity of M_b , there is a τ_i -open set U containing M_b such that $\tau_i - cl(U) \cap A = \varphi$. By weak ij-closedness of p, there exists an Λ_i –open nbd V of b such that $M_{(\Lambda_i - cl(V))} \subset \tau_j$ -cl(U), which implies that $M_{(A_i - cl(V))}$ \cap $A = \varphi$, i.e., $(A_i - cl(V))$ \cap $p(A) = \varphi$, which is impossible since $b \in ij$ $cl p(A)$. Hence $b \in p(ij-cl(A))$. So f is ij-closed.

Definition 2.25.[11] A subset A in bitopological space (M, τ_1, τ_2) is called ij-H-set in M if and only if for each τ_i -open cover A of A, there is a finite sub collection B of A such that $A \subset U$ $\{\tau_i-cl(U): U \in \mathcal{B}\}\$, i, j = 1,2. A is called a pairwise-H-set if and only if it is a 12- and 21-Hset. If A is an ij-H-set (pairwise-H-set) and $A = M$, then the space is called an ij-QHC (resp. pairwise QHC) space, where $i, j = 1, 2$.

Lemma 2.26.[10] A subset A of a bitopological space (M, τ_1, τ_2) is an ij-H-set if and only if for each filter base $\mathcal F$ on A, $(ij - ad \mathcal F)$ \cap $A \neq \varphi$, where $i, j = 1, 2$. **Proof.** (\Rightarrow) Clear.

(\Leftarrow) Let A be a τ_i -open cover of A such that the union of τ_j -closure of any finite Sub collection of A is not cover A. Then $\mathcal F$ $\overline{A} \setminus \bigcup_{\mathcal B} \tau_i$ -cl(B) : $\mathcal B$ is finite sub collection of $\mathcal A$ is a filter base on A and (ij-ad F) \cap A = φ . This contradiction so that A is ij-set.

Theorem 2.27. If (M, τ_1, τ_2) is F.W. ij-perfect bitopological space over bitopological space (B, A_1, A_2) and $B^* \subset B$ is an ij-H-set in B, then M_{B^*} is an ij-H-set in M, where $i, j = 1, 2$. **Proof.** Assume that *M* is a F.W. ij-perfect bitopological space over B, then the projection p_M : $M \to B$ exist. Let *F* be a filter base on M_{B^*} , then $p(\mathcal{F})$ is a filter base on B^* . Since B^* is an ij-H-set in B, B^{*} \cap ij – ad $p(\mathcal{F}) \neq \varphi$ by lemma (2.26). By theorem (2.10 (a) \Rightarrow (c)), B^{*} \cap p(ij – $ad(F)$ $\neq \varphi$, so that M_{R^*} \cap ij-ad $(F) \neq \varphi$. Hence by lemma (2.26), M_{R^*} is an ij-H-set in M. The converse of the above theorem is not true, is shown in the next example.

Example 2.28. Let $M = B = IR$, τ_1 and τ_2 be the cofinite and discrete topologies on M and Λ_1 , Λ_2 respectively denote the indiscrete and usual topologies on B. Suppose $p : (M, \tau_1, \tau_2) \rightarrow$ (B, A_1, A_2) is the identity function. Each subset of either of (M, τ_1, τ_2) and (B, A_1, A_2) is a 12set. Now, any non-void finite set $A \subset M$ is 12-closed in M, but $p(A)$ (i.e., A) is not 12-closed in B (in fact, the only 12-closed subsets of B are B and φ).

Definition 2.29. A function $f : (M, \tau_1, \tau_2) \to (N, \sigma_1, \sigma_2)$ is said to be almost ij-perfect if for each ij-H-set K in N, $f^{-1}(K)$ is an ij-H-set in M, where $i, j = 1, 2$.

Definition 2.30. The F.W. ij-bitopological space (M, τ_1, τ_2) over bitopological space $(B, \Lambda_1, \Lambda_2)$ is called F.W. almost ij-perfect if and only if the projection p is almost ij-perfect, where $i, j =$ 1, 2. *By analogy to theorem (2.16), a sufficient condition for a function to be almost ij-perfect, is proved as follows.*

Theorem 2.31. Let (M, τ_1, τ_2) be F.W. ii- bitopological space over bitopological space (B, A_1, A_2) such that:

(a) M_h is ij-rigid, for each $b \in B$, and

(b) (M, τ_1, τ_2) is F.W. weakly ij-closed bitopological space.

Then (M, τ_1, τ_2) is F.W. almost ij-perfect bitopological space.

Proof. Assume that M is a F.W. ij-bitopological space over B, then the projection $p_M : M \to B$ exist and it is ij-continuous. Let B^* be an ij-H-set in B and let $\mathcal F$ be a filter base on M_{B^*} . Now $p(\mathcal F)$ is a filter base on B^{*} and so by theorem (2.26), $(ij - ad p(\mathcal{F})) \cap B^* \neq \varphi$. Let $b \in (i, j -ad p(\mathcal{F}))$ ad $p(\mathcal{F})$ \cap B^* . Suppose that $\mathcal F$ has no ij-ad point in M_{B^*} so that (ij-ad $(\mathcal F)$) \cap $M_b = \varphi$. Since M_b is ij-rigid, there exists an $F \in \mathcal{F}$ and a τ_i -open set U containing M_b such that $F \cap \tau_i - cl(U) =$ φ . By weak ij-closedness of p, there is a Λ_i -open nbd V of b such that $M_{(A_i - cl(V))} \subset \tau_i - cl(U)$ which implies that $M_{(A_i - cl(V))} \cap F = \varphi$, i.e., A_i -cl(V) \cap $p(F) = \varphi$, which is a contradiction. Thus by theorem (2.26), M_{B^*} is an ij-H-set in M and hence p is almost ij-perfect.

We now give some applications of ij-perfect functions. The following characterization theorem for an ij-continuous function is recalled to this end.

Theorem 2.32. A bitopological space (M, τ_1, τ_2) is F.W. ij-bitopological space over bitopological space (B, A_1, A_2) . if and only if $p(ij - cl(A)) \subset ij - cl(p(A))$, for each $A \subset M$, where $i, j =$ 1, 2.

Proof. (⇒) Assume that M is a F.W. ij-bitopological space over B, then the projection $p_M : M \to$ B exist and it is ij-continuous. Suppose that $x \in ij-cl(A)$ and V is Λ_i -open nbd of $f(x)$. Since p is ij-continuous, there exists an τ_i -open nbd U of x such that $p(\tau_i - cl(U)) \subset \Lambda_i - cl(V)$. Since τ_i - cl (U) $\cap A \neq \varphi$, then A_i - cl(V) \cap $p(A) \neq \varphi$. So, $p(x) \in ij - cl(p(A))$. This shows that $p(ii - cl(A)) \subset ii - cl(p(A)).$

$$
(\Leftarrow)
$$
 Clear.

Theorem 2.33. Let (M, τ_1, τ_2) be a F.W. ij-perfect bitopological space over bitopological space (B, A_1, A_2) . Then M_A preserves ij-rigidity, where $i, j = 1, 2$.

Proof. Assume that M is a F.W. ij-bitopological space over B, then the projection $p_M : M \to B$ exist and it is ij-continuous. Let A be an ij-rigid set in B and let $\mathcal F$ be a filter base on M such that $M_A \cap (i,j-ad(\mathcal{F})) = \varphi$. Since p is ij-perfect and $A \cap p(ij-ad(\mathcal{F})) = \varphi$ by theorem (2.10 (a) \Rightarrow (c)) we get A \cap $(ij - ad p(\mathcal{F})) = \varphi$. Now A being an ij-rigid set in B, there exists an $F \in \mathcal{F}$ such that $A \cap ij - clp(F) = \varphi$. Since p is ij-continuous, by theorem (2.32) it follows that $A \cap p(i)$ $cl(F)$ = φ . Thus $M_A \cap (ij-cl(F)) = \varphi$. This proves that M_A is ij-rigid.

In order to investigate for the conditions under which a F.W. almost ij-perfect bitopological space may be F.W. ij-perfect bitopological space, we introduce the following definition.

Definition 2.34. A function $f: (M, \tau_1, \tau_2) \to (N, \sigma_1, \sigma_2)$ is said to be *ij**-continuous if and only if for any σ_i -open nbd V of $f(x)$, there exists a τ_i -open nbd U of x such that $f(\tau_i-cl(U)) \subset \sigma_i$ $cl(V)$, where $i, j = 1, 2$.

Definition 2.35. The F.W. ij-bitopological space (M, τ_1, τ_2) over bitopological space $(B, \Lambda_1, \Lambda_2)$ is called F.W. ij^* -bitopological space if and only if the projection p is ij^* -continuous, where $i, i = 1, 2.$

The relevance of the above definition to the characterization of F.W. ij-perfect bitopological space is quite apparent from the following result.

Definition 2.36. A bitopological space (M, τ_1, τ_2) is said to be pairwise Urysohn space if for $x, y \in M$ with $x \neq y$, there are τ_i -open nbd U of x and τ_i -open nbd V of y such that τ_i – $cl(U) \cap \tau_i - cl(V) = \varphi$, where $i, j = 1, 2$.

Theorem 2.37. If (M, τ_1, τ_2) is F.W. ij*-bitopological space on a pairwise Urysohn space (B, A_1, A_2) , then it is F.W. ij-perfect bitopological space if and only if for every filter base $\mathcal F$ on M, if $p(\mathcal{F}) \xrightarrow{i_j \text{--con}} b$ wher $b \in B$, then $ij - ad \mathcal{F} \neq \varphi$, where $i, j = 1, 2$.

Proof. (\Rightarrow) Let (M, τ_1, τ_2) be a F.W. *i* j^{*}-bitopological space on a pairwise Urysohn space (B, A_1, A_2) , then there is a ij^{*}-continuous projection function $p: (M, \tau_1, \tau_2) \to (B, A_1, A_2)$ and $p(F) \xrightarrow{i_j - \alpha n} b$ where $b \in B$, for a filter base $\mathcal F$ on M . Then $M_{p(\mathcal F)} \xrightarrow{i_j - \alpha n} M_b$. Since $\mathcal F$ is finer than $M_{p(F)}$, $M_b \cap ij - ad \mathcal{F} \neq \varphi$, so that $ij - ad \mathcal{F} \neq \varphi$.

(←): Suppose that for every filter base $\mathcal F$ on M , $p(\mathcal F) \xrightarrow{i_j = con.} b$ where $b \in B$ implies $ij - ad \mathcal F \neq$ φ . Let G be a filter base on B such that $\mathcal{G} \xrightarrow{i f \text{ conn.}} b$, and suppose that \mathcal{G}^* is a filter base on M such that G^* is finer than M_G . Then $p(G^*)$ is finer than G. So $p(G^*) \xrightarrow{i j - con.} b$. Hence $i j - ad G^* \neq \varphi$. Let *z* ∈ *B* such that $z \neq b$. Then since *B* is pairwise Urysohn, there exist a Λ_i -open nbd *U* of *b* and A_i -open nbd V of z such that $(A_i - cl(U)) \cap (A_i - cl(V)) = \varphi$. Since $p(G^*) \xrightarrow{i_j - con.} b$, there exist a $G \in \mathcal{G}^*$ such that $p(G) \subset \Lambda_i - cl(U)$. Now, since p is ij^{*}-continuous, corresponding to each $x \in M_z$ there is a τ_i -open nbd W of x such that $p(\tau_i-cl(W)) \subset \Lambda_i-cl(V)$. Thus Λ_i – $cl(W) \cap G = \varphi$. It follows that $M_z \cap ij - G^* = \varphi$, for each $z \in B - \{b\}$. Consequently $M_b \cap ij$ $ad G^* \neq \varphi$, and p is ij- perfect and hence (M, τ_1, τ_2) is F.W. ij*-bitopology.

Definition 2.38. [9] A bitopological space (M, τ_1, τ_2) is said to be locally ij-QHC bitopological space if and only if for every $x \in M$, there is a τ_i -open nbd of x, which is an ij-H-set, where $i, i = 1, 2.$

Lemma 2.39. [10] In a pairwise Urysohn bitopological space (M, τ_1, τ_2) an ij-H-set is ij-closed, where $i, j = 1, 2$.

Corollary 2.40. Let (M, τ_1, τ_2) be a F.W. *ij*^{*}-bitopological space and ij-QHC on a pairwise Urysohn bitopological space (B, A_1, A_2) , then (M, τ_1, τ_2) is F.W. ij-perfect bitopological space, where $i, j = 1, 2$.

Theorem 2.41. Let (M, τ_1, τ_2) be a F.W. ij*-bitopological space and locally ij-QHC on a Urysohn space (B, A_1, A_2) , then (M, τ_1, τ_2) is F.W. *ij**-bitopological space if and only if it is F.W. almost ij-perfect, where $i, j = 1, 2$.

Proof. (\Rightarrow) If (M, τ_1, τ_2) is F.W. *ij**-bitopological space, then by corollary (2.40.), it is F.W. almost ij-perfect.

 (\Leftarrow) Let (M, τ_1, τ_2) is F.W. almost ij-perfect, then there exist almost ij-perfect projection function $p: (M, \tau_1, \tau_2) \to (B, \Lambda_1, \Lambda_2)$, and let $\mathcal F$ be any filter base on M and let $p(\mathcal F) \xrightarrow{i_j \text{--con.}} b$ where $b \in B$. There are an ij-H-set B^* in B and Λ_i -open nbd V of b such that $b \in V \subseteq B^*$. Let $\mathcal{H} = {\Lambda_i - \Lambda_j}$ $cl(U) \cap p(F) \cap B^*$; $F \in \mathcal{F}$ and U is a Λ_i -open nbd of b . By lemma (2.39), B^* is ij-closed and hence no member of $\mathcal H$ is void. In fact, if not, let for some Λ_i -open nbd U of b and some $F \in \mathcal F$, $A_i-cl(U) \cap p(F) \cap B^* = \varphi$. Then $W = U \cap V$ since $y \in U \cap V \in A_i$ and $A_i-cl(W) = ij$ $cl(W) \subset ij-cl(B^*) = B^*$ by lemma (2.21). Now $\varphi = \Lambda_i-cl(W) \cap p(F) \cap B^* = \Lambda_i$ $cl(W) \cap p(F)$, which is not possible, since $p(F) \xrightarrow{i f \text{ even}} b$. Thus *H* is filter base on *B*, and is clearly finer than $p(\mathcal{F})$, so that $\mathcal{H} \xrightarrow{i f - con.} b$. Also $\mathcal{G} = \{M_H \cap F : H \in \mathcal{H} \text{ and } F \in \mathcal{F}\}$ is clearly a filter on M_{B^*} . Since p is almost ij-perfect, M_{B^*} is an ij-H-set and hence $ij - ad G \cap M_{B^*} \neq \varphi$. Thus $ij - ad \mathcal{F} \neq \varphi$. Thus p is ij-perfect and by theorem (2.37) (M, τ_1, τ_2) is F.W. ij^* . bitopological space.

We now give some application of F.W. ij-perfect bitopological space. The following characterization theorem for a F.W. ij-bitopological space is recalled to this end.

Theorem 2.42. A F.W. set *M* over *B* is F.W. ij-bitopological space if and only if $p(ij-cl(A))$ ⊂ ij-clp(A) for each $A \subset M$, where i, $j = 1, 2$.

Proof: (\Leftrightarrow) Since M is a F.W. set over B, then there is projection p where $p: M \to B$. Now we have to prove that p is ij-continuous. But it directly by theorem (2.32).

Lemma 2.43. It was proved in (Sen and Nandi 1993) [12] that a bitopological space (M, τ_1, τ_2) is pairwise Hausdorff if and only if $\{m\} = ij - cl\{m\}$, for each $m \in M$. It then follows immediately in view of theorem (2.14).

Theorem 2.44. If (M, τ_1, τ_2) is a F.W. ij-perfect surjection bitopological space with M is a pairwise Hausdorff space on a bitopological space $(B, \Lambda_1, \Lambda_2)$, Then B is also pairwise Hausdorff. **Proof:** Let b_1 , $b_2 \in B$ such that $b_1 \neq b_2$. Since p is onto, then M_{b1} , $M_{b2} \in M$ and since p is one to one, then $M_{b1} \neq M_{b2}$. Since p is ij-perfect, so by theorem (2.14) it is ij-closed. By lemma (2.43) we have $\{M_{b1}\}=i\bar{j}-cl{M_{b1}}\}$ and $\{M_{b2}\}=i\bar{j}-cl{M_{b2}}\}$. Since p is pairwise Hausdorff. Now $p(ij - cl{M_{b1}}) = ij - cl{b_1}$ and $p(ij - cl{M_{b2}}) = ij - cl{b_2}$ since p is ij-closed. This mean $b_1 = ij - cl{b_1}$ and $b_2 = ij - cl{b_2}$. Hence B is pairwise Hausdorff.

Our next theorem give a characterization of an important class of F.W. bitopological space viz. the ij-QHC spaces in terms of F.W. ij-perfect bitopological space.

Theorem 2.45. For a bitopological space (M, τ_1, τ_2) , the following statement are equivalent:

- a) M is ij-QHC
- b) The F.W. (M, τ_1 , τ_2) is ij-perfect bitopological space with constant projection over B^* where B^* is a singleton with two equal bitopologies viz. the unique bitopology on B^* .
- c) The F.W. $(B \times M, Q_1, Q_2)$ is ij-perfect bitopological space over (B, A_1, A_2) , where $Q_i = A_i \times \tau_i$, $i, j = 1, 2$ and $i \neq j$.

Proof: (a)⇒(b) Let $p: (M, \tau_1, \tau_2) \rightarrow (B^*, \Lambda_1, \Lambda_2)$ is a constant projection over B^* where B^* is a singleton with two equal bitopologies viz the unique bitopology on B^* . P is clearly ij-closed. Also, M_{B^*} , i.e. M is obviously ij-rigid since B^* is ij-QHC. Then by theorem (2.16) p is ij-perfect. **(b)**⇒**(a)** Follows from theorem (2.33).

(a)⇒(C) Suppose that $(B \times M, Q_1, Q_2)$ is F.W. bitopological space over $(B, \Lambda_1, \Lambda_2)$ where Q_i = $A_i \times \tau_i$, $i, j = 1, 2$ and $i \neq j$, then there is a projection $p = \pi_i$: $(B \times M, Q_1, Q_2) \rightarrow (B, A_1, A_2)$. We show that π_i is ij- closed and for each $b \in B$, M_B is ij-rigid in $B \times M$. Then the result will follow from theorem (2.16). Let $A \subset B \times M$ and $a \notin \pi_i(ij - cl(A))$. For each $m \in M$, $(a, m) \notin ij$ $cl(A)$, so that there exist a Λ_i -open nbd G_m of a and a τ_i -open nbd H_m of m such that $[Q_i$ $cl(G_m \times H_m)] \cap A = \varphi$. Since *M* is ij-QHC, $\{a\} \times M$ is a ij –H-set in $B \times M$. Thus there exist finitely many elements $m_1, m_2, m_3, ..., m_n$ with $\{a\} \times M \subset \bigcup_{k=1}^n Q_i - cl(G_{m_k} \times H_{m_k})$. Now, $a \in$ $\bigcap_{k=1}^n G_{m_k} = G$ which is a Λ_i -open nbd of a such that $(\Lambda_i - cl(G) \cap \pi_i(A) = \varphi$. Hence $a \notin \mathcal{U}$ $cl\pi_i(A)$ and thus $ij-cl\pi_i(A) \subset \pi(ij-cl(A))$. So π is ij-closed, by theorem (2.12). Next, let $b \in$ B. To show that $(B \times M)_b = \pi_i^{-1}(b)$ to be ij-rigid in $B \times M$. Let F be a filter base on $B \times M$ such that $\pi_i^{-1}(b) \cap ij - ad \mathcal{F} = \varphi$. For each $m \in M$, $(b, m) \notin ij - ad \mathcal{F}$. Thus there exist Λ_i -open nbd U_m of b in B , a τ_i –open nbd V_m of m in M and an $F_m \in \mathcal{F}$ such that $Q_i - cl(U_m \times V_m) \cap F_m =$ φ . As show above, there exist finitely many elements $m_1, m_2, m_3, ..., m_n$ of M such that $\{b\} \times$ $M \subset \bigcup_{k=1}^{n} Q_i - cl(U_{m_k} \times V_{m_k})$. Putting $U = \bigcap_{k=1}^{n} U_{m_k}$ and choosing $F \in \mathcal{F}$ with $F \subset$

 $\bigcap_{k=1}^{n} F_{m_k}$, we get $\{b\} \times M \subset U \times M \subset Q_j$ such that $Q_i - cl(U \times M) \cap F = \varphi$. Thus $(ij - n)$ $cl(F)$) \cap $[\pi_i^{-1}(b)] = \varphi$. Hence $\pi_i^{-1}(b)$ is ij-rigid in $B \times M$. (c)⇒(a) Taking $B^* = B$, we have that $p = \pi_i : B^* \times B \times \rightarrow B^*$ is ij-perfect. Therefore by theorem. (2.27) $B^* \times M$ is an ij-H-set and Hence *M* is ij-QHC.

References

- [1] A. A. Abo Khadra, S. S. Mahmoud and Y. Y. Yousif, Fibrewise near topological spaces, *Journal of Computing*, USA, Vol4, Issue 5, May (2012), pp. 223-230.
- [2] S. Bose and D. Sinha (1981): Almost open, almost closed, θ -continuous and almost quasicompact mappings in bitopological spaces, Bull. Cal.Math. Soc. 73, 345.
- [3] Bourbaki N., 1975, General Topology, Part I, Addison-Wesly, Reding, mass.
- [4] nglking R., (1989), Outline of General Topology, Amsterdam.
- [5] I. M. James, Fibrewise Topology, Cambridge University Press, London 1989.
- [6] Kariofillis, C.G.(1986): On Pairwise Almost Compactness, Ann. Soc. Sci. Bruxelles 100, 129.
- [7] J. C. Kelly, Bitopological spaces, Proc. London Math. Soc., Vol.13, 1963, pp.71-89.
- [8] S. S. Mahmoud and Y. Y. Yousif, Fibrewise near separation axioms, International Mathematical Forum, Hikari Ltd, Bulgaria, Vol.7, No.35,(2012), pp.1725-1736.
- [9] Mukherjee M. N., Nandi. J.N. and Sen S. K., Concerning Bitopological QHC Extenstion, Indian Jour. Pure. Appl. Math 27, (3), March (1996), pp.257-246
- [10] Mukherjee M. N., Nandi. J.N. and Sen S. K., On Bitopological QHC spaces, Indian Jour. Pure. Appl. Math 27, (3), March (1996), pp.245-255
- [11] Mukherjee, M. N. (1982): On pairwise almost compactness and pairwise-H closedness in bitopological space Ann. Soc. Sci. Bruxelles 96. 98.
- [12] Sen, S.K. and Nandi, J.N. (1993): Characterizations of some bitopological spaces, Ann, Soc. Sci. Bruxelles 48, 207.
- [13] Y. Y. Yousif, L. A. Hussain, Fibrewise Bitopological Spaces, *Journal of International Journal of Science and Research (IJSR),* Vol. 6, (2017), pp 978-982.
- [14] Y. Y. Yousif, L. A. Hussain, Fibrewise pairwise i-Separation Axioms, *International Journal of Pure and Applied Mathematics IJPAM*, submitted.
- [15] Y. Y. Yousif , M. A. Hussain, Fibrewise Soft Near Separation Axioms, preprint.
- [16] Y. Y. Yousif , M. A. Hussain, Fibrewise Soft Topological Spaces, *International Journal of Science and Research (IJSR)* Volume 6 Issue 2, (2017), pp.1010-1019, February.
- [17] Y. Y. Yousif, Some result on fibrewise Lindelöf and locally Lindelöf Topological space, *Ibn Al-haitham Journal science*, 191-198, Vol. 22, No. 3, (2009), pp. 191-198.
- [18] Y. Y. Yousif, Some result on fibrewise Topological space, *Ibn Al-haitham Journal for pure and Applied science*. University of Baghdad – Collage of Education – Ibn Al-haitham Vol. 21, No. **2** , (2008), pp. 118-132.