Abstract. This study gives a comprehensive analysis of the properties and interactions of fibrewise maximal and minimal topological spaces. Fibrewise topology extends classical topological concepts to structured spaces, providing a thorough understanding of spaces that vary across different dimensions. We study the basic theories, crucial properties, and characterizations of maximal and minimal fibrewise topological spaces. We investigate their role in different mathematical contexts and draw connections with related topological concepts. By providing exact mathematical formulations and comprehensive examples, this abstract advances the fields of topology and mathematical analysis by elucidating the unique properties and implications of fibrewise maximal and minimal topological spaces.
The main purpose of this paper is to introduce a some concepts in fibrewise totally topological space which are called fibrewise totally mapping, fiberwise totally closed mapping, fibrewise weakly totally closed mapping, fibrewise totlally perfect mapping fibrewise almost totally perfect mapping. Also the concepts as totally adherent point, filter, filter base, totally converges to a subset, totally directed toward a set, totally rigid, totally-H-set, totally Urysohn space, locally totally-QHC totally topological space are introduced and the main concept in this paper is fibrewise totally perfect mapping in totally top
We introduce in this paper some new concepts in soft topological spaces such as soft simply separated, soft simply disjoint, soft simply division, soft simply limit point and we define soft simply connected spaces, and we presented soft simply Paracompact spaces and studying some of its properties in soft topological spaces. In addition to introduce a new types of functions known as soft simply
Let A ⊆ V(H) of any graph H, every node w of H be labeled using a set of numbers; , where d(w,v) denotes the distance between node w and the node v in H, known as its open A-distance pattern. A graph H is known as the open distance-pattern uniform (odpu)-graph, if there is a nonempty subset A ⊆V(H) together with is the same for all . Here is known as the open distance pattern uniform (odpu-) labeling of the graph H and A is known as an odpu-set of H. The minimum cardinality of vertices in any odpu-set of H, if it exists, will be known as the odpu-number of the graph H. This article gives a characterization of maximal outerplanar-odpu graphs. Also, it establishes that the possible odpu-number of an odpu-maximal outerplanar graph i
... Show MoreThe main idea of this research is to study fibrewise pairwise soft forms of the more important separation axioms of ordinary bitopology named fibrewise pairwise soft
This study examines traveling wave solutions of the SIS epidemic model with nonlocal dispersion and delay. The research shows that a key factor in determining whether traveling waves exist is the basic reproduction number R0. In particular, the system permits nontrivial traveling wave solutions for σ≥σ∗ for R0>1, whereas there are no such solutions for σ<σ∗. This is because there is a minimal wave speed σ∗>0. On the other hand, there are no traveling wave solutions when R0≤1. In conclusion, we provide several numerical simulations that illustrate the existence of TWS.
ABSTRACT: BACKGROUND: Infantile haemangioma one of the most common tumour of new borns , a safe and effective treatment options are under ongoing research . OBJECTIVE: The authors show the effectiveness and safety of low dose propranolol as a method for infantile haemangioma treatment . METHOD: In this study twenty- four patients with infantile haemangioma in different anatomical locations were treated with oral propranolol and the result were assessed in a retrospective analysis of the results patients were kept on 0.25 mg/kg/day for one month , then on 0.5mg/kg/day in 2 divided doses for another one month , in the third month the dose will be increased to 1 mg/kg/day in 2 divided doses , then the propranolol were given in a maintenance do
... Show MoreBackground: The surgical treatment of pilonidal sinus varies from wide excision and laying the wound open or excision with primary closure or excision with the use of skin graft in some special cases.
Objectives: The objectives of this study is to determine the efficacy of treating non complicated pilonidal sinus disease with minimal excision and primary closure technique, complications and recurrence rate.
Patients and methods: This is a prospective study conducted in shahid ahmed ismaiel hospital in rania – As sulaimania IRAQ during the period from December 2013 to January 2016 and was carried on one hundred (100) consecutive patients with non complicated non recurrent pilonidal sinus patients who were treated with minimal exci
The importance of topology as a tool in preference theory is what motivates this study in which we characterize topologies generating by digraphs. In this paper, we generalized the notions of rough set concepts using two topological structures generated by out (resp. in)-degree sets of vertices on general digraph. New types of topological rough sets are initiated and studied using new types of topological sets. Some properties of topological rough approximations are studied by many propositions.