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Abstract 
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topological rough approximations are studied by many propositions. 
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1.  Introduction and Preliminaries 
Rough set theory, proposed in [9-14], is a good mathematical tool for data 

representation. Its methodology is concerned with the classification and analysis of missing 

attribute values, uncertain or incomplete information systems and knowledge, and it is 

considered one of the first non-statistical approaches in data analysis [5, 6, 7]. The subset 

generated by lower approximation is characterized by certain objects that will definitely form 

part of an interest subset, whereas the upper approximation is characterized by uncertain 

objects that will possibly form part of an interest subset. Every subset defined through upper 

and lower approximation is known as rough set. 

For a long time, many individuals believed that abstract topological structures have 

limited application in the generalization of real line and complex plane or some connections 

to Algebra and other branches of mathematics. And it seems that there is a big gap between 

these structures and real life applications. We noticed that in some situations, the concept of 

relation is used to get topologies that are used in important applications such as computing 

topologies [16], recombination spaces [2, 4, 17] and information granulation which are used 

in biological sciences and some other fields of applications. 

A directed graph or digraph [15] is a pair G = (V(G), E(G)) where V(G) is a non-empty 

set (called vertex set) and E(G) of ordered pairs of elements of V(G) (called edge set). An 

edge of the from (v, v) is called a loop. If v  V(G), the out-degree of v is |{u  V(G) : (v, u) 

 E(G)}| and in-degree of v is |{u  V(G) : (u, v)  E(G)}|. A digraph is reflexive if (v, v)  

E(G) for each v  V(G), symmetric if (v, u)  E(G) implies (u, v)  E(G), transitive if (v, u) 

 E(G) and (u, w)  E(G) implies (v, w)  E(G). A subgraph of a graph G is a graph each of 

whose vertices belong to V(G) and each of whose edges belong to E(G). 

Let X be a finite set, the universe of discourse, and R be an equivalence relation on X [5, 

10], called an indiscernability relation. The pair K = (X, R) is called a Pawlak's approximation 

spaces. R generates a partition X/R = {Rx : x  X} on X where Rx are the equivalence classes 

for x  X generated by the equivalence relation R. In the rough set theory, these are also 

called elementary sets of R. Every finite union of elementary sets in K will be called a 

composed set in K. The family of all composed sets in K will be denoted by com(K). The 

family com(K) in the approximation space K = (X, R) is a topology on the set X [11]. For any 

A  X, the lower L(A) approximation and upper U(A) approximation of A  are defined as: 



International Journal of Advanced Scientific and Technical Research                Issue 5 volume 3, May-June 2015 

Available online on   http://www.rspublication.com/ijst/index.html                                              ISSN 2249-9954 

R S. Publication, rspublicationhouse@gmail.com Page 266 

 

L(A) = {x  X : Rx  A} and U(A) = {x  X : Rx ∩ A  }. 

Boundary, positive and negative regions are also defined: 

Bd(A) = U(A) – L(A), POS(A) = L(A), and NEG(A) = X – U(A). 

The reference space in rough set theory is the approximation space, whose topology (X, 

com(K)) generated by the equivalence classes of R. In this topology, the closure and interior 

operators are the same of the upper and lower approximation operators. Moreover, this 

topology belongs to a special class known by Clopen topology, in which every open set is 

closed and vice versa. Clopen topology is called the quasi-discrete topology [1]. 

We will express rough set properties in terms of topological concepts. Let A be a subset 

of X. Let Cl(A), Int(A) and Bd(A) be closure, interior, and boundary points respectively. A is 

exact if Bd(A) = , otherwise A is rough. It is clear A is exact iff Cl(A) = Int(A). In Pawlak 

space a subset A  X has two possibilities rough or exact. For a general topological space, A 

 X has the following types of definability: 

(a) A is totally definable if A is exact set "Int(A) = A = Cl(A)", 

(b) A is internally definable if A = Int(A), A  Cl(A), 

(c) A is externally definable if A  Int(A), A= Cl(A), 

(d) A is undefinable if A  Int(A), A  Cl(A). 

Original rough membership function is defined using equivalence classes. We will 

extend it to topological spaces. If T is a topology on a finite set X, where its base is , then the 

rough membership function is 

Xx,,
}{

A}{
)x( x

x

x

A 



T  

where x is any member of  containing x. It can be shown that this number is independent of 

the choice of bases. Since, the intersection of all members of the topology containing A 

concedes with the intersection of all members of a base containing x. 

 

2.  Topologies Generalized by Out(resp. In)-Degree Sets and Rough 

Topological Approximations 
In this section we introduce the basic notations to topological lower and topological 

upper approximations. Here we define two topologies generated by any digraph. The subbase 

of the first topology T(v)D (out-degree topology) is the out-degree set (v)D. Also, the second 

topology TD(v) (in-degree topology) is the in-degree set D(v) where, (v)D, D(v), T(v)D and TD(v) 

are define as follows: 

 

Definition 2.1. Let G = (V(G), E(G)) be a digraph and a vertex v  V(G). 

(a)  The out-degree set of v is denoted by (v)D and defined as: 

(v)D = {u  V(G) : (v, u)  E(G)}. 

(b)  The in-degree set of v is denoted by D(v) and defined as: 

D(v) = {u  V(G) : (u, v)  E(G)}. 

 

Definition 2.2. Let G = (V(G), E(G)) be a digraph, then 

(a)  The class {(v)D : v  V(G)} is a subbase for the topology T(v)D on G. 

(b)  The class {D(v) : v  V(G)} is a subbase for the topology TD(v) on G. 

The topological lower and the topological upper approximations of a subgraph H = 

(V(H), E(H)) of G are defined using the topologies T(v)D and TD(v) as follows: 

LT(v)D(H) = {(v)D : (v)D  V(H)} and 

UT(v)D(H) = {(v)D : (v)D  V(H)  }. 
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LTD(v)(H) = {D(v) : D(v)  V(H)} and 

UTD(v)(H) = {D(v) : D(v)  V(H)  }. 

 

Some types of topological rough sets are initiated in the following definition. 

Definition 2.3. Let G = (G, D) be a generalized approximation space. Let T(v)D and TD(v) be 

the two topologies generated using the relation D. Then the subgraph H  G is called: 

(a)  Semi rough (briefly S12-rough) if V(H)  UTD(v)(LT(v)D(H)). 

(b)  Pre rough (briefly P12-rough) if V(H)  UT(v)D(LTD(v)(H)). 

(c)  Semi-pre rough (briefly 12-rough) if V(H)  UTD(v)(LT(v)D(UTD(v)(H))). 

(d)  -Rough (briefly 12-rough) if V(H)  LT(v)D(UTD(v)(LT(v)D(H))). 

(e)  -Rough (briefly 12-rough) if V(H)  UTD(v)(LT(v)D(H))LT(v)D(UTD(v)(H)). 

The family of all S12-rough (resp. P12-rough, 12-rough, 12-rough and 12-rough) sets in 

G = (G, D) is denoted by FS12(G) (resp. FP12(G), F12(G), F12(G) and F12(G)). 

The complement of S12-rough (resp. P12-rough, 12-rough, 12-rough and 12-rough) set 

is called S c

12 -rough (resp. P c

12 -rough,  c

12 -rough,  c

12 -rough and  c

12 -rough). 

The family of all S c

12 -rough (resp. P c

12 -rough,  c

12 -rough,  c

12 -rough and  c

12 -rough) sets 

of G = (G, D) is denoted FS c

12 -rough (resp. FP c

12 -rough, F c

12 -rough, F c

12 -rough and F c

12 -

rough). 

 

Proposition 2.1. In the generalized approximation space G = (G, D), we can prove that: 

(a)  F12(G)  FS12(G)  F12(G)  F12(G). 

(b)  F12(G)  FP12(G)  F12(G)  F12(G). 

Proof. Obvious. 

 

The following example illustrates the above definition. 

Example 2.1. Let G = (V(G), E(G)) be a digraph such that V(G) = {v1, v2, v3, v4} and E(G) = 

{(v1, v1), (v1, v3), (v1, v4), (v2, v2), (v2, v4), (v3, v1), (v3, v2), (v3, v4), (v4, v1)}. Hence the subbase 

of T(v)D is {{v1, v3, v4}, {v2, v4}, {v1, v2, v4}, {v1}} and the subbase of TD(v) is {{v1, v3, v4}, {v2, 

v3}, {v1}, {v1, v2, v3}}. Then 

T(v)D = {G, , {v1, v3, v4}, {v2, v4}, {v1, v2, v4}, {v1}, {v4}, {v1, v4}}, 

TD(v) = {G, , {v1, v3, v4}, {v1, v3}, {v1, v2, v3}, {v1}, {v3}, {v2, v3}}. 

Consequently, 

F12(G) = FS12(G) = {G, , {v1, v3, v4}, {v2, v4}, {v1, v2, v4}, {v1}, {v4}, {v1, v4}}, 

F12(G) = F12(G) = {G, , {v1}, {v4}, {v1, v2}, {v1, v4}, {v1, v3}, {v1, v2, v3}, {v2, v4}, {v1, v2, 

v4}, {v1, v3, v4}}. 

 

Definition 2.4. Let G = (G, D) be a generalized approximation space and subgraph H  G. 

Then the general lower (briefly J12 lower) of H denoted by LJ12(H) for all J12  {S12, P12, 12, 

12, 12} is defined by: LJ12(H) = {O  FJ12(G) : O  V(H)}. 

 

Definition 2.5. Let G = (G, D) be a generalized approximation space and subgraph H  G. 

Then the general upper (briefly J12 upper) of H denoted by UJ12(H) for all J12  {S12, P12, 12, 

12, 12} is defined by: UJ12(H) = {O  FJ
c

12 (G) : V(H)  O}. 
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Definition 2.6. Let G = (G, D) be a generalized approximation space. Then for all J12  {S12, 

P12, 12, 12, 12} the topological general lower and topological general upper approximations 

of any subgraph H  G are defined as: RLJ12(H) = LJ12(H), RUJ12(H) = UJ12(H). 

 

Proposition 2.2. Let G = (G, D) be a generalized approximation space generated by any 

digraph G = (V(G), E(G)). Then for any subgraph H  G. 

(a)  LT(v)D(H)  L12(H)  LS12(H)  L12(H)  L12(H)  V(H)  U12(H)  U12(H)  

US12(H)  U12(H)  UT(v)D(H). 

(b)  LTD(v)(H)  L12(H)  LP12(H)  L12(H)  L12(H)  V(H)  U12(H)  U12(H)  

UP12(H)  U12(H)  UTD(v)(H). 

Proof. 

(a)  LT(v)D(H) = {O  T(v)D : O  V(H)}  {O  F12(G) : O  V(H)} 

 {O  FS12(G) : O  V(H)}  {O  F12(G) : O  V(H)} 

 {O  F12(G) : O  V(H)}  V(H)  {O  F c

12 (G) : V(H)  O} 

 {O  F c

12 (G) : V(H)  O}  {O  FS c

12 (G) : V(H)  O} 

 {O  F c

12 (G) : V(H)  O}  {O  T c
D)v(  : V(H)  O}. 

Hence, LT(v)D(H)  L12(H)  LS12(H)  L12(H)  L12(H)  V(H)  U12(H)  

U12(H)  US12(H)  U12(H)  UT(v)D(H). 

(b)  By the same manner as (a). 

 

Example 2.2. According to Example 2.1, if H = (V(H), E(H)) and K = (V(K), E(K)) be two 

digraph such that V(H) = {v1, v2}, V(K) = {v4}, E(H) = {(v1, v1), (v2, v2)} and E(K) = . Then 

L12(H) = {v1}, LP12(H) = {v1, v2}, U12(K) = {v2, v3, v4}, and UP12(K) = {v4}. So L12(H)  

LP12(H) and UP12(K)  U12(K). 

 

Proposition 2.3. Let G = (G, D) be a generalized approximation space generated by any 

digraph G. Then for any two subgraphs H, K  G we have for all J12  {S12, P12, 12, 12, 

12}: 

(a)  LJ12() = UJ12() = , LJ12(G) = UJ12(G) = V(G). 

(b)  If H  K, then LJ12(H)  LJ12(K). 

(c)  If H  K, then UJ12(H)  UJ12(K). 

(d)  LJ12(HK)  LJ12(H)  LJ12(K). 

(e)  UJ12(HK)  UJ12(H)  UJ12(K). 

(f)  LJ12(HK)  LJ12(H)  LJ12(K). 

(g)  UJ12(HK)  UJ12(H)  UJ12(K). 

(h)  LJ12(H
c
) = [UJ12(H)]

c
. 

(i)  UJ12(H
c
) = [LJ12(H)]

c
. 

Proof. By using the properties of LJ12(H) and UJ12(H) for all J12  {S12, P12, 12, 12, 12} the 

proof is complete. 

 

The following example, at J12 = 12 illustrates that the inverse of Property (d) in the 

above proposition in general does not hold for all J12  {S12, P12, 12, 12, 12}. 

Example 2.3. According to Example 2.1, if H = (V(H), E(H)) and K = (V(K), E(K)) be two 

digraph such that V(H) = {v1}, V(K) = {v3, v4}, E(H) = {(v1, v1)} and E(K) = {(v3, v4)}. Then 

L12(H) = {v1}, L12(K) = {v4}, and L12(HK)  L12(H)  L12(K). 
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The following example shows that the inverse of the Properties (e) and (f) in 

Proposition 2.2, in general are not true for all J12  {S12, P12, 12, 12, 12}, we consider J12 = 

12. 

Example 2.4. According to Example 2.1, if H1 = (V(H1), E(H1)), H2 = (V(H2), E(H2)), K1 = 

(V(K1), E(K1)) and K2 = (V(K2), E(K2)) be four digraph such that V(H1) = {v1}, V(H2) = {v4}, 

V(K1) = {v1, v2}, V(K2) = {v2, v4}, E(H1) = {(v1, v1)}, E(H2) = , E(K1) = {(v1, v1), (v2, v2)}, 

and E(K2) = {(v2, v2), (v2, v4)}. Then U12(H1) = {v1, v3}, U12(H2) = {v4}, U12(H1H2) = 

V(G), L12(K1) = {v1, v2}, L12(K2) = {v2, v4}, and L12(K1K2) = . Hence U12(H1H2)  

U12(H1)  U12(H2) and L12(K1K2)  L12(K1)  L12(K2). 

 

The following example shows that the Property (g) in Proposition 2.2, in general are 

not true for all J12  {S12, P12, 12, 12, 12}, we consider J12 = P12. 

Example 2.5. According to Example 2.1, if H = (V(H), E(H)) and K = (V(K), E(K)) be two 

digraph such that V(H) = {v1, v3, v4}, V(K) = {v2, v3, v4}, E(H) = {(v1, v1), (v1, v3), (v1, v4), (v3, 

v1), (v3, v4), (v4, v1)} and E(K) = {(v2, v2), (v2, v4), (v3, v2), (v3, v4)}. Then UP12(H) = V(G), 

UP12(K) = {v2, v3, v4} and UP12(HK) = {v3, v4}. Hence UP12(HK)  UP12(H)  UP12(K). 

 

Remark 2.1. Let G = (G, D) be a generalized approximation space defined on any digraph G. 

Then for all J12  {S12, P12, 12, 12, 12}, and for any subgraph H  G, the following 

properties do not hold: 

(a)  LJ12(LJ12(H)) = UJ12(LJ12(H)) = LJ12(H). 

(b)  UJ12(UJ12(H)) = LJ12(UJ12(H)) = UJ12(H). 

 

The following example illustrates the above remark, using J12 = 12. 

Example 2.6. According to Example 2.1, if H = (V(H), E(H)) and K = (V(K), E(K)) be two 

digraph such that V(H) = {v1}, V(K) = {v3, v4}, E(H) = {(v1, v1)} and E(K) = {(v3, v4)}. Then 

L12(H) = {v1}, L12(L12(H)) = {v1}, U12(L12(H)) = {v1, v3}, U12(K) = {v3, v4}, 

U12(U12(K)) = {v3, v4}, L12(U12(K)) = {v4}. Hence LJ12(LJ12(H))  UJ12(LJ12(H)), 

UJ12(UJ12(H))  LJ12(UJ12(H)). 

 

Lemma 2.1. Let G = (G, D) be a generalized approximation space, and for any subgraph H  

G, then [ClJ12(H)]
c
 = IntJ12(H

c
) for all J12  {S12, P12, 12, 12, 12}. 

Proof. Let H  G, then for all J12  {S12, P12, 12, 12, 12}, we get: 

[ClJ12(H)]
c
 = V(G)  ClJ12(H) 

                  = V(G)  {V(F)  V(G) : F is J12 upper graph and V(H)  V(F)}. 

                   = {[V(G)  V(F)]  V(G) : (G  F) is J12 lower graph and [V(G)  V(F)]  

[V(G)  V(F)]} = IntJ12(G  H). 

Thus [ClJ12(H)]
c
 = IntJ12(H

c
). 

 

Proposition 2.4. Let G = (G, D) be a generalized approximation space defined on any 

digraph G, for any two subgraphs H, K  G we have: LJ12(H  K)  LJ12(H)  LJ12(K), for all 

J12  {S12, P12, 12, 12, 12}. 

Proof. As H  K = H  K
c
, then: 

LJ12(H  K) = IntJ12(H  K) = IntJ12(H  K
c
)  IntJ12(H)  IntJ12(K

c
). By lemma 2.1, we have 

LJ12(H  K)  IntJ12(H)  [ClJ12(K)]
c
 = IntJ12(H)  ClJ12(K)  IntJ12(H)  IntJ12(K). Thus 

LJ12(H  K)  LJ12(H)  LJ12(K). 
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The next example illustrates that the inverse of Proposition 2.4, in general does not hold 

with respect to J12 = 12. 

Example 2.7. According to Example 2.1, if H = (V(H), E(H)) and K = (V(K), E(K)) be two 

digraph such that V(H) = {v1, v2}, V(K) = {v1}, E(H) = {(v1, v1), (v2, v2)} and E(K) = {(v1, 

v1)}. Then L12(H) = {v1, v2}, L12(K) = {v1} and L12(H  K) = , thus LJ12(H  K)  LJ12(H) 

 LJ12(K). 

 

3. Topological Generalizations of Rough Concepts 
In this section we introduce and study some topological generalizations for some 

concepts of the rough set theory by using the J12 lower and J12 upper approximations. 

 

Definition 3.1. Let G = (G, D) be a generalized approximation space defined on any digraph 

G. Then for all J12  {S12, P12, 12, 12, 12} and for any subgraph H  G we define: 

(a)  H is totally topological J12-definable (J12-exact) graph if LJ12(H) = UJ12(H) = V(H). 

(b)  H is internally topological J12-definable graph if LJ12(H)=V(H) and UJ12(H)V(H). 

(c)  H is externally topological J12-definable graph if LJ12(H)V(H) and UJ12(H)=V(H). 

(d)  H is topologically J12-indefinable (J12-rough) graph if LJ12(H)V(H) and UJ12(H)V(H). 

 

Example 3.1. According to Example 2.1, for subgraphs H = (V(H), E(H)) and K = (V(K), 

E(K)) such that V(H) = {v4}, V(K) = {v3, v4}, E(H) =  and E(K) = {(v3, v4)}, H is 

topologically 12-exact graph, H is topologically internally 12-definable graph, K is 

topologically S12-rough graph, and K is topologically externally P12-definable graph. 

 

Definition 3.2. Let G = (G, D) be a generalized approximation space defined on any digraph 

G. Then we can introduce the generalized accuracy measure for any graph H  G as the 

following: 

J12(V(H)) = 
|))H(V(U|

|))H(V(L|

J

J

12

12 , UJ12(H)  , 

where J12  {S12, P12, 12, 12, 12}, and | H | denoted the cardinality of the vertex set of H. 

The number J12 of the above definition is a measure of the degree of exactness of any 

subgraph H  G. So by this measure we will determine, what is the best of our definitions for 

the J12 lower and J12 upper approximations. We can notice that: 

(a)  0  T(v)D(V(H))  12(V(H))  S12(V(H))  12(V(H))  12(V(H))  1. 

(b)  0  T(v)D(V(H))  12(V(H))  P12(V(H))  12(V(H))  12(V(H))  1. 

So the best definition here is J12 = 12. 

 

The next example studies the comparison between 12 and S12. 

Example 3.2. According to Example 2.1, we have the following table: 

Subgraph H S12(V(H)) 12(V(H)) 

{v4} 1/3 1 

{v1, v3} 1/2 1 

{v2, v4} 2/3 1 

{v1, v2, v3} 1/3 1 

 

By using the definitions of rough concepts at J12 = 12 we can tends to exactness of 

many graphs. This will lead to accurate results in many data reduction applications using new 

topological approaches. Next works shall deal with more types of applications in data 

reductions, data processing, image processing and rule extraction. 
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Definition 3.3. Let G = (G, D) be a generalized approximation space defined on any digraph 

G. Then for all J12  {S12, P12, 12, 12, 12} and for any H, K  G we call: 

(a)  H is roughly bottom-part of K in G iff LJ12(H)  LJ12(K) and denoted by H
12J~ K. 

(b)  H is roughly top-part of K in G iff UJ12(H)  UJ12(K) and denoted by H 12J
~ K. 

 

The illustration of the facts of the above definition are given as below example. 

Example 3.3. According to Example 2.1, if H1 = (V(H1), E(H1)), H2 = (V(H2), E(H2)), H3 = 

(V(H3), E(H3)) and H4 = (V(H4), E(H4)) be four digraph such that V(H1) = {v1, v3, v4}, V(H2) = 

{v2, v3, v4}, V(H3) = {v2, v4}, V(H4) = {v3, v4}, E(H1) = {(v1, v1), (v1, v3), (v1, v4), (v3, v1), (v3, 

v4), (v4, v1)}, E(H2) = {(v2, v2), (v2, v4), (v3, v2), (v3, v4)}, E(H3) = {(v2, v2), (v2, v4)}, and E(H4) 

= {(v3, v4)}. Then we have: H4 
12P~  H3, H2 12S

~ H1 and H2 12
~

 H1. 

 

Definition 3.4. Let G = (G, D) be a generalized approximation space defined on any digraph 

G. For any subgraph H  G and any vertex v  V(G), for all J12  {S12, P12, 12, 12, 12} we 

call: 

(a)  v is surely belong in H iff v  LJ12(H) and denoted by v 
12J~ H. 

(b)  v is possibly belong in H iff v  UJ12(H) and denoted by v 12J
~ H. 

 

Proposition 3.1. Let G = (G, D) be a generalized approximation space defined on any 

digraph G. For any subgraph H  G and any vertex v  V(G), for all J12  {S12, P12, 12, 12, 

12}, we have: 

(a)  if v 
12J~  H then v  V(H). 

(b)  if v 12J

~  H then v  V(H). 

Proof. The proof is direct from definitions. 

 

The following example shows that the inverse of Proposition 3.1, in general does not 

hold. 

 

Example 3.4. According to Example 2.1, let H = (V(H), E(H)), K = (V(K), E(K)) be two 

digraph such that V(H) = {v1, v2, v3}, V(K) = {v1, v4}, E(H) = {(v1, v1), (v1, v3), (v2, v2), (v3, 

v1), (v3, v2)} and E(K) = {(v1, v1), (v1, v4), (v4, v1)}. Then we have: v2  V(H), but v2 12S

~ H 

and v2 12

~
 H. Also, we have v2  V(K), but v2 12S

~ K, v2 12P

~ K, v2 12

~
 K and v2 12

~
 K. 

 

4. Conclusions 
One of the main contributions of this paper is in the area of topological classifications. 

Based on topological space, we presented an underlying theory to explain how classifications 

of rough sets topologically may be performed. 

 

We conclude that the intermingling of topology in the construction of some 

approximation space concepts will help to get results with abundant logical statements. That 

is discovering hidden relationships among data and, moreover, probably helps in producing 

accurate programs (Duntsch et al., 2001[3]; Lipski, 1981[8]). 
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