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Abstract
This study examines traveling wave solutions of the SIS epidemic model with nonlocal
dispersion and delay. The research shows that a key factor in determining whether
traveling waves exist is the basic reproduction number R0. In particular, the system
permits nontrivial traveling wave solutions for σ ≥ σ ∗ for R0 > 1, whereas there are no
such solutions for σ < σ ∗. This is because there is a minimal wave speed σ ∗ > 0. On
the other hand, there are no traveling wave solutions when R0 ≤ 1. In conclusion, we
provide several numerical simulations that illustrate the existence of TWS.
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1 Introduction
In recent years, the study of traveling wave solutions in epidemic models has been a major
focus due to their significant contributions to disease dynamics [1, 2]. More precisely, the
minimal wave speed has a significant role to play in modeling the spatial propagation of an
infectious disease in structured populations. In this article, we explore the minimal wave
speed and traveling wave solutions in a nonlocal dispersion SIS epidemic model with delay.
Our study is founded on the existing theoretical framework for wave propagation in phys-
ical and biological systems. In the same vein, previous studies on wave behavior in com-
plicated media have been informative as far as transmission dynamics are concerned. For
example, Seema and Singhal [3] investigated SH wave transmission in magneto-electro-
elastic structures, while their study on Love-type wave velocity in bedded piezo-structures
[4] explained the impact of rheological models and flexoelectric effects. Along a similar
line, research on surface and interface phenomena in quasicrystals [5] has indicated the in-
tricate interactions of material characteristics on wave phenomena (see also [6]). Drawing
insights from such modeling approaches, we extend these principles to epidemiological
contexts by adding nonlocal interaction and delay dynamics, thereby presenting a more
integrated view of epidemic wavefront evolution.
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Such wave-like solutions describe the invasion of disease into new regions at a constant
speed and provide insight into critical thresholds for outbreaks, disease persistence, and
control strategies [7–13]. Among these, traveling wave solutions for the delayed SIS model
with nonlocal dispersion and time delays provide an efficient framework for understand-
ing spatial-temporal dynamics in disease consideration.

The SIS model is widely used in the study of diseases where individuals, after recovery,
become susceptible again. The dispersion of such models is nonlocal because long-range
interactions between individuals or populations are considered due to human mobility,
migration, or environmental causes [14]. Such a concept generalizes the classical model
of diffusion and is very applicable to the study of contemporary epidemics influenced by
globalization and fast transportation [15, 16].

Another important element of epidemic modeling is time delays. Delays stand for the
time that is spent for processes such as incubation periods, immune response, or behav-
ioral changes, and may significantly alter the stability and propagation of disease waves
[17–26]. In particular, delays offer a realistic way to model the variability in such pro-
cesses; for instance, see studies by Naji et al. (2022) [27] and Tian et al. (2023) [28], where
delays influenced wave speeds and dynamics in epidemic models.

Traveling waves in delayed SIS models with nonlocal dispersion and delays extend the
classical reaction-diffusion framework of Fisher (1937) and Kolmogorov, Petrovsky, and
Piskunov (1937) [29, 30]. These models explicitly include not only the spatial movement
of individuals but also the effects due to long-range interactions and/or time lags, hence
inducing richer wave dynamics. For example, the works by Fang and Zhao (2018) [31] and
Li et al. (2016) [32] point out how such factors influence minimal wave speed, stability,
and wave shape for traveling wave solutions.

This paper focuses on the SIS epidemic model with nonlocal dispersion and delays, aim-
ing at a more complete understanding of the conditions under which traveling wave solu-
tions exist and propagate. In particular, we will explore the following problems:

The existence and uniqueness of traveling wave solutions. The minimal wave speed (c∗)
is required for disease invasion. The impact of some key parameters, including the basic
reproduction number (R0) and delay terms, on wave propagation.

The advance of the mathematical theory of traveling waves in epidemic models, in which
the approach is based on theoretical analysis supported by numerical simulations, and
realistic insights into the control of infectious diseases are discussed in this paper. These
findings have special relevance to understanding the new epidemics, in which long-range
interactions and time delays may play a decisive role in shaping the disease dynamics [33,
34].

In this paper, a saturation incidence rate, constant recruitment, and cooperation with
a delayed diffusive SIR model are used to study the TWS connecting the equilibria, EES,
and IFES. We also utilized the Schauder fixed point theorem to prove that the truncated
problem admits a fixed point, and then it is used to show the convergence of the solution
to the equilibria toward x = ±∞. In fact, it was demonstrated that when R0 > 1, there is
σ ∗ > 0, in such a way, when σ ≥ σ ∗, the system admits a TWS with speed σ .

The SIS model has a lengthy history [35]. It describes the transmission of human viruses
like influenza. The SIS model with a constant population is particularly useful for de-
scribing bacterial agent disorders, including gonorrhea, meningitis, and streptococcal sore
throat. SIS is a model without immunity in which the individual who has recovered from
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the virus returns to the class of susceptibles. Such mobility can be modeled by considering
a nonlocal dispersion operator, which can be defined as follows:

J[Φ](x) := J ∗ Φ(x) – Φ(x) =
∫
R

J(x – y)Φ(y)dy – Φ(x)

=
∫
R

J(y)Φ(x – y)dy – Φ(x), Φ ∈ C(R),

Then, we omit the following nonlocal dispersal SIS epidemic model with delay

{
St = d1(J ∗ S(x, t) – S(x, t)) + χ – μS(x, t)) – λS(x, t)I(x, t) + ρI(x, t),
It = d2(J ∗ I(x, t) – I(x, t)) + λS(x, t – ς)I(x, t – ς) – (μ + ρ)I(x, t),

(1.1)

with t > 0 and x ∈ R. S(x, t) and I(x, t) denote the densities of susceptible, infective individ-
uals at time t and location x in mathematical epidemiology, respectively; d1, d2 are positive
describe the spatial motility of each class; μ is positive parameters represent the death rate
of each class; ρ > 0 is the recovery rate of the infective individuals. ς > 0 represents the
duration of the delay. This SIS model with nonlocal diffusion and time delay is essential
for the realistic modeling of disease dynamics where mobility and latency are significant.
It enhances our understanding and provides effective tools for prediction and control in
both human and animal epidemiology. We take the following assumptions

(B) dj are positive, and μ,ς ,ρ > 0 for j = 1, 2.
(P) J ∈ C1(R), J(0) > 0, J(x) = J(–x) ≥ 0 ∀x ∈R,

∫
R

J(x)dx = 1, limΛ→+∞ 1
Λ

∫
R

J(z)e–Λzdz =
+∞.

2 Minimal wave speed σ ∗

Finding the constant equilibria of (1.1) is necessary to demonstrate whether or not the
traveling wave solutions for (1.1) exist. E0 = ( χ

μ
, 0), which is frequently referred to as the

DFE of (1.1) is obviously always an equilibrium. To get a positive equilibrium, it is similar
to considering the following ODE system.

{
St = χ – μS(t) – λS(t)I(t) + ρI(t),
It = λS(t – ς)I(t – ς)) – (μ + ρ)I(t).

(2.1)

The following is the appropriate basic reproduction number,

R0 =
λs0

μ + ρ
.

Notably, (2.1) permits a unique endemic equilibrium E∗ = (s∗, i∗) if R0 > 1, with
s∗ = (μ+ρ)

λ
, and i∗ = λχ–μ(μ+ρ)

λμ
= μ(μ+ρ)(R0–1)

λμ
.

We shall always assume that R0 > 1 in the following. Two equilibria, E0 and E∗, are ad-
mitted by the system (2.1) in this instance. Finding TWS of (1.1) that connect with E0 and
E∗ is of primary importance to us. A unique solution of the form (1.1) is a TWS.

(s(ε), i(ε)), ε = x + σ t ∈R. (2.2)
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We replace (2.2) in (1.1), we get the wave form equations as

{
σ s′(ε) = d1(J ∗ s(ε) – s(ε)) + χ – μs(ε) – λs(ε)i(ε) + ρi(ε),
σ i′(ε) = d2(J ∗ i(ε) – i(ε)) + λs(ε – σς)i(ε – σς) – (μ + ρ)i(ε),

(2.3)

with the boundary conditions

(s, i)(–∞) = (
χ

μ
, 0), (s, i)(+∞) = (s∗, i∗). (2.4)

Our goal is to find a positive solution of (2.3) that meets (2.4) boundary conditions. By the
second equation of (2.3), it may be linearized at E0 = ( χ

μ
, 0) to get

–σ i′(ε) + d2(J∗i(ε)) + λs0i(ε – σς) – (μ + ρ + d2)i(ε) = 0. (2.5)

Entering i(ε) = eΛε in (2.5) yields the following characteristic equation:

F(Λ,σ ) := –σΛ + d2

∫ +∞

–∞
J(y)e–Λydy + λs0e–σςΛ – (μ + ρ + d2) = 0. (2.6)

Consequently, the following outcomes are obtained by examining the characteristic
equation (2.6).

Lemma 2.1 Suppose R0 > 1, ∃σ ∗ > 0 and Λ∗ > 0 such that

∂F(Λ,σ )

∂Λ2

∣∣∣∣
(Λ∗ ,σ∗)

= 0 and F(Λ∗,σ ∗) = 0.

Additionally, the following options are valid:
(i) F(Λ,σ ) > 0 for every Λ ∈ (0,Λσ ) and 0 < σ < σ ∗, with Λσ ∈ [0, +∞[.

(ii) Two positive distinct real roots Λ1(σ ) < Λ2(σ ) that fulfil F(Λ;σ ) = 0 exist if σ > σ ∗.

F(Λ,σ )

{
> 0 Λ ∈ (0,Λ1(σ )) ∪ (Λ2(σ ),∞),
< 0 Λ ∈ (Λ1(σ ),Λ2(σ )),

where

σ ∗ = sup{σ > 0|F(Λ,σ ) > 0,∀Λ ∈ R}

exists and is constructive for the demonstration of this outcome simple.
We now examine the following sections to discuss whether a traveling wave solution

exists.

3 The absence of traveling waves solution
Next theorem illustrates the situation in which a traveling waves solution is not admitted
by the system (2.1).

Theorem 3.1 If R0 > 1 and 0 < σ < σ ∗, hence, (2.3) has no TWS of the form (s(ε), i(ε)) that
satisfies (2.4).
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Proof Assume that for some 0 < σ < σ ∗, there exists a TWS noted by (s∗(ε), i∗(ε)) of system
(2.3) that satisfies requirements (2.4). For each ε > 0, we have some Mχ > 0 big where
s0 – χ ≤ s∗(ε) < s0 for all ε ≤ –Mχ , according to (2.4) and R0 > 1. By combining the second
equation of system (2.3), we get

σ i∗(ε) = d2(J ∗ i∗(ε) – i∗(ε)) + λs(ε – σς)i(ε – σς) – (μ + ρ)i∗(ε),
≥ d2(J ∗ i∗(ε) – i∗(ε)) + λ(s0 – ε)i(ε – σς)) – (μ + ρ)i∗(ε),

(3.1)

regarding ε < –Mε . Observing that traveling waves have asymptotic boundary conditions
(2.4) and continuity, there are positive constants δ and M0 such that, for every ε ∈ R,
s∗(ε) ≥ δ and i∗(ε) ≤ M0. By (H), we obtain that

λ(s0 – ε)i∗(ε – σς)))

λs ∗ (ε – σς)i∗(ε – σς)
≤ λ(s0 – ε)i∗(ε – σς)

λδi∗(ε – σς))
=

λ(s0 – ε)i∗(ε – σς))i∗(ε – σς)

λδi∗(ε – σς)i∗(ε – σς)
,

≤ M0

λδM0 λs0 < ∞, ε > –Mε .

A positive constant i–(ε) > 0 exists such that i∗(ε) ≥ i– for all ε ≥ –Mε , given that i∗(ε) > 0
for ε ∈R and i∗(+∞) = i∗ > 0. As a result, we can select a constant a > 1 so that

λ(s0 – χ)i∗(ε – σς)

(1 + i∗(ε – σς))h ≤ λs∗(ε – σς)i∗(ε – σς) for ε > –Mχ .

Then, for ε > –Mχ , the following inequality holds:

σ i∗(ε) ≥ d2(J ∗ i∗(ε) – i∗(ε)) +
λs∗(ε – σς)i∗(ε – σς)

(1 + i(ε – σς))a – (μ + ρ)i∗(ε). (3.2)

By combining (3.1) and (3.2), we obtain

σ i∗(ε) ≥ d2(J ∗ i∗(ε) – i∗(ε)) +
λ(s0 – χ i∗(ε – σς)

(1 + i∗(ε – σς))a – (μ + ρ)i∗(ε), ε ∈R. (3.3)

Let Φ(x, t) = i∗(x + σς) and b(Φ) = infΦ≤ϕ≤M0
λ(s0–χ)ϕ

(1+ϕ)a . From (3.3), it is evident that

⎧⎨
⎩

∂Φ(x,t)
∂t ≥ d2(J ∗ Φ(x, t) – Φ(x, t)) + b(Φ(x, t – ς)) – (ρ + μ)Φ(x, t – ς),

Φ(x, t) = i∗(x + σς), x ∈R, t > 0.

Using the comparison principle [36], we get

Φ(x, t) ≥ ϕ(x, t), x ∈R, t ≥ 0, (3.4)

when the solution of the equation is ϕ(x, t)
{

∂ϕ(x,t)
∂t = d2(J ∗ ϕ(x, t) – ϕ(x, t)) + b(ϕ(x, t – ς)) – (ρ + μ)ϕ(x, t – ς),

ϕ(x, t) = i∗(x + σς), x ∈R, t > 0.
(3.5)

We then demonstrate that for every σ̂ ∈ (0,σ ∗),

lim
t→∞ inf

|x|≤σ̂ t
ϕ(x, t) > 0. (3.6)
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According to the asymptotic spreading concept [16]. We know that the operation J2 ∗ ·
[37, 38] can result in a C0-semigroup. The only two equilibria that system (3.5) allows are
ϕ = 0 and b(ϕ∗) – (μ + ρ)ϕ∗ = 0, each is a positive equilibrium ϕ = ϕ∗, proving that it is
an ODE system equation. We write C := C(R × [–ς , 0]) and Cϕ∗ := {ϕ ∈ C : 0 ≤ ϕ ≤ ϕ∗}.
According to the semigroup theory [37, 38], the system (3.5) generates a monotone semi-
flow Qt : Cϕ∗ → Cϕ∗ :

Qt(ψ)(x) = ϕ(x + t,ς), x ∈R, t,ς ≥ 0,ψ ∈ Cϕ∗
i
,

where the starting value is ϕ(x, t – ς) = ψ , and ϕ(x, t) is the sell solution of (3.5).
Indicate C([–ς , 0]) = C̃ the formula is C̃ϕ∗ = {ϕ ∈ C̃ : 0 ≤ ϕ ≤ ϕ∗}. The following delayed

differential equation results in a solution semi-flow that is Q̃t : C̃ϕ∗ → C̃ϕ∗ .

{
dϕ(t)

dt = b(ϕ(t – ς)) – (ρ + μ)ϕ(t – ς), t > 0,

where ϕt = ϕ(t – ς), and the starting value is ϕ0 = ψ0 ∈ C̃ϕ∗ . Q̃t is eventually strongly
monotone on C̃ϕ∗ , according to Corollary 5.3.5 in [39]. Moreover, we derive that Q̃t is a
highly monotone full orbit linking 0 to ϕ∗

i using the Dancer-Hess connecting orbit lemma
[14]. Thus, hypothesis (A5) in [36] is true. Indeed, it is evident that Q̃t meets all of the
assumptions (A1)–(A5) in [36] for every t > 0. It is evident that equation (3.5) is likewise
satisfied by Q̃t . The restriction of Qt to C̃ϕ∗ is thus also Q̃t . This suggests that Theorem
2.17 in [36] can be used. As a result, we ultimately determine that (3.6) is true.

By selecting σ0 ∈ (σ ,σ ∗) and allowing x = –σ0t, (3.4) and (3.6) indicate that

lim inf
t→∞ Φ(x, t) ≥ lim inf

t→∞,|x|≤σ0t
v(x, t) > 0. (3.7)

The ultimate result is ε = x + σ t = (σ – σ0)t → –∞ as t → ∞.

lim
t→∞Φ(x, t) = lim

t→∞ i∗(x + σ t) = lim
t→∞ i∗((σ – σ0)t) = lim

ε→–∞ i∗(ε) = 0.

This is not consistent with (3.7). This completes the evidence. □

4 Noncritical TWS
We assume in this section that σ > σ ∗. The following subsection are used to discuss if a
traveling wave solution exists.

4.1 Upper and lower solution
Using an iterative process, we construct a pair of super- and subsolutions of (2.3) for σ >
σ ∗. The idea underlying such a structure is

Definition 4.1 (s–, i–) and (s+, i+) also represent pair of supper- and subsolutions of (2.3),
respectively, and they both fulfil

–σ (s+)′(ε) + d1(J ∗ s(ε) – s(ε)) + χ – μ(s+)(ε) – λ(s+)(ε)(i–)(ε) + i+(ε) ≤ 0, (4.1)

–σ (s–)′(ε) + d1(J ∗ s(ε) – s(ε)) + χ – μ(s–)(ε) – λ(s–)(ε)(i+)(ε) ≥ 0, (4.2)
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–σ (i+)′(ε) + d2(J ∗ i(ε) – i(ε)) + λs+(ε – σς)i+(ε – σς) – (μ + ρ)(i+)(ε) ≤ 0, (4.3)

–σ (i–)′(ε) + d2(J ∗ i(ε) – i(ε)) + λs–(ε –c ς)i–(ε – σς) – (μ + ρ)(i–)(ε) ≥ 0, (4.4)

except for finite points of ε ∈R.

Lemma 4.2 Suppose that R0 > 1, and σ > σ ∗. Let

s+(ε) = s0, i+(ε) = eΛ1ε ,

s–(ε) = max

{
s0 – Meκε , 0

}
, i–(ε) = max{eΛ1ε(1 – Leηε), 0},

for some positive constants κ , L, then (4.1)–(4.4) are satisfied.

Proof The following points are used to establish the evidence.
(i): Clearly s+(ε) = s0 satisfies

–σ (s+)′(ε) + d1(J ∗ s(ε) – s(ε)) + χ – μs+(ε) – λs+(ε)i–(ε) + ρi–(ε) ≤ 0, (4.5)

then, (4.1) is satisfied.
(ii) Clearly, i+(ε) = eΛ1ε , we prove that i+(ε) fulfils (4.3). It is simple to verify that

d2(J ∗ i+(ε) – i+(ε)) + λ(s+)(ε – σς)i+(ε – σς) – (μ + ρ)(i+)(ε) – σ (i+)′(ε),
(4.6)

≤ d2(J ∗ i+(ε) – i+(ε)) + λs0(i+)(ε – σς) – (μ + ρ)(i+)(ε) – σ (i+)′(ε),

≤ –σ (i+)′(ε) + d2

∫ +∞

–∞
J(y)e–Λ1ydy + λs0i+(ε – σς) – (μ + ρ + d2)i+(ε),

= d2

∫ +∞

–∞
J(y)e–Λ1ydy + λs0eΛ1(ε–σς ) – (μ + ρ + d2)eΛ1ε – σΛ1eΛ1ε ,

= eΛ1εF(Λ1,σ ),
= 0,

by the Λ1 definition.

(iii) Taking 0 < γ < min

{
Λ1, σ

d2

}
. Where ε �= 1

γ
ln 1

M := ε∗, and we assert that s– fulfils

–σ (s–)′(ε) + d1(J ∗ s–(ε) – s–(ε)) + χ – μ(s–)(ε) – λs–(ε)i+(ε) + εi+(ε) ≥ 0.

The inequality is directly proved by assuming that ε > ε∗, which implies that
s–(ε) = 0 in (ε∗,∞). We obtain s–(ε) = s0 – Meγ ε if ε < ε∗. We obtain
λs(ε)i(ε) ≤ λs0i(ε) by the concavity of L(s(ε), i(ε). Next, we have

–σ (s–)′(ε) + d1(J ∗ s–(ε) – s–(ε)) + χ – μ(s–)(ε) – λs–(ε)i+(ε) + ρi+(ε) ≥ 0,

≥ σMγ eγ ε + d1Meγ ε

∫ +∞

–∞
J(x)e–γ xdx + χ – μ(s0 – Meγ ε) – λs0(s0 – Meγ ε),

= eγ ε

[
σMγ eγ ε – d1Meγ ε

∫ +∞

–∞
J(x)e–γ xdx + d1Meγ ε – λs0

(
s0

M

)Λ–γ
γ

]
.
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Here, we use

eγ ε <
(

s0

M

)Λ–γ
γ

for ε < ε∗.

Keeping γ M = 1 and letting M → ∞ for some M > s0 large enough and γ small
enough, we have

–σ (s–)′(ε) + d1(J ∗ s–(ε) – s–(ε)) + χ – μ(s–)(ε) – λs–(ε)i+(ε) + γ i+(ε) ≥ 0.

The claim is proved.
(iv) Requiring L > 0 to be suitably big and 0 < η < min{Λ2 – Λ1,Λ1}. Consequently, we

assert that i–(ε) satisfies

–σ (i–)′(ε) + d2(J ∗ s(ε) – s(ε)) + λs–(ε – σς)i–(ε – σς) – (μ + ρ)i–(ε) ≥ 0,

(4.7)

with ε �= ε2 := –lnL
η

.
We demonstrate this assertion for two distinct scenarios, ε > ε2 and ε < ε2,

respectively. i–(ε) = 0 if ε > ε2, indicating that (4.7) is met. i–(ε) == eΛ1ε(1 – Leηε) is
obtained if ε < ε2. Here, we demonstrate that (4.7) holds for sufficiently big L, which
will be found later. Observe that the following is an expression for Inequality (4.7).

λs0i–(ε – σς) – λs–(ε – σς)i–(ε – σς)

≤ –σ (i–)′(ε) + d2(J ∗ i–(ε) – i–(ε)) + λs0i–(ε – σς)

– (μ + ρ)i–(ε),

≤ –LF(Λ1 + η,σ )e(Λ1+η)ε . (4.8)

Regarding every ξ ∈ (0,λs0). For any ε < ε2, i– is a bounded function, hence δ0 > 0
satisfies 0 < i– < δ0. Since i– is limited for ε < ε2 and λs0 > 0, we get the existence of
ξ > 0 very small, the following inequality, λs– ≥ λs0 – ξ > 0, is true for each and
every 0 < i– < δ0. We may exploit that 0 < i– < δ0 to obtain

λs0i–(ε – σς) – λs–(ε – σς)i–(ε – σς) =
(

λs0 – λs–(ε – σς)

)
i–(ε – σς),

≤
(

λs0–λs–(ε–σς )+i–(ε–σς )
2

)2

≤
[
λs0 –

(
λs0 – ξ

)
+ i–(ε – σς)

]2

.

(4.9)

Then, we have

λs0i–(ε – σς) – λs–(ε – σς)i–(ε – σς) ≤ i–2(ε – σς).
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So, it is enough to demonstrate that

(i–2)(ε – σς) ≤ –LF(Λ1 + η, c)e(Λ1+η)ε , (4.10)

in order to prove Inequality (4.8).
We obtain (i–(ε – σς))2 ≤ e2Λ1ε where i– ≤ i+. For the sake of (4.10), we

demonstrate that

e2Λ1ε ≤ –LF(Λ1 + η,σ )e(Λ1+η)ε . (4.11)

Inequality (4.11) holds for M sufficiently big as both of its sides trend to 0 as
ε → –∞ and are limited for any ε < ε2. The proof is finished. □

4.2 Truncated problem
We take into consideration the following bounded set for every Υ > max{|ε∗|, |ε0|, r}.

ΓΥ (ε) =
{

(φ(ε)ϕ(ε)) ∈ C
(
[–Υ ,Υ ],R2) ∣∣∣∣φ(–Υ ) = s(–Υ ),

ϕ – Υ ) = i(–Υ ), s–(ε) ≤ φ(ε) ≤ s0, i–(ε) ≤ ϕ(ε) ≤ i+(ε),

ε ∈ [–Υ ,Υ ]

}
.

For any (φ,ϕ(ε)) ∈ ΓΥ (ε), we define

φ̂(ε) =

⎧⎪⎨
⎪⎩

φ(Υ ), ε > Υ ,
φ(ε), |ε| ≤ Υ ,
s–(–Υ ), ε < –Υ ,

ϕ̂(ε) =

⎧⎪⎨
⎪⎩

ϕ(Υ ), ε > Υ ,
ϕ(ε), |ε| ≤ Υ ,
i–(–Υ ), ε < –Υ ,

ΓΥ (ε) is clearly a closed and convex set. It is satisfied that
(
φ̂(ε), ϕ̂(ε)

)

s–(ε) ≤ φ̂(ε) ≤ s0, i–(ε) ≤ ϕ̂(ε) ≤ i+(ε), ε ∈R.

We omit the truncated problem

{
σ s′(ε) = d1((J ∗ φ̂)(ε) – s(ε)) + χ – μs(ε) – βs(ε)ϕ(ε) + ρi(ε),
σ i′(ε) = d2(

(
J ∗ ϕ̂

)
(ε) – i(ε)) + λφ̂(ε – σς)ϕ̂(ε – σς) – (μ + ρ)i(ε),

(4.12)

with

s(–Υ ) = s–(–Υ ), i(–Υ ) = i–(–Υ ). (4.13)

The generic differential equation results guarantee that a unique nonnegative solution
(sΥ (ε), iΥ (ε)) can be found for the starting value problems (4.12) and (4.13) created for
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ε ∈ [–Υ ,Υ ]. Thus, we define the solution map F = (F1,F2) on ΓX(ε) as follows:

F1(φ,ϕ) = sΥ , F2(φ,ϕ) = iΥ .

Lemma 4.3 For all Υ > max{|ε∗|, |ε0|, r}, map F = (F1,F2) : ΓΥ (ε) → ΓΥ (ε).

Lemma 4.2 and the comparison principle can be used to infer Lemma 4.3. As an illus-
tration, we can consult [31, Proposition 2.1]

Lemma 4.4 The map F = (F1,F2) : ΓΥ (ε) → ΓΥ (ε) is completely continuous.

Proof We can determine from (4.12) that (sΥ (ε), iΥ (ε)) ∈ C1([–Υ ,Υ ],R2) for any (φ,ϕ) ∈
ΓΥ (ε). Thus, the Arzelà–Ascoli theorem may be used to infer that the map F is compact.
The continuity of F is then examined.

Suppose that sΥ ,k(ε) = F1(φk ,ϕk)(ε, for ε ∈ [–Υ ,Υ ], iΥ ,k(ε) = F2(φk ,ϕk)(ε), where
(φk(ε),ϕk(ε)) ∈ ΓΥ (ε) (k = 1, 2). First, we determine if F1 is continuous. Lemma 4.2 and
the comparison principle may be used to infer Lemma 4.3 from the first equation of (4.12).
As an illustration, we can consult [31, Proposition 2.1]

σ (s′
Υ ,1(ε) – s′

Υ ,2(ε)) + (d1 + μ)(sΥ ,1(ε) – sΥ ,2(ε)) – ρ(ϕ2(ε) – ϕ1(ε))

= d1

∫
R

J(y)(φ̂1(ε – y) – φ̂2(ε – y))dy + λsΥ ,2(ε)ϕ2(ε) – λsΥ ,1(ε)ϕ1(ε).
(4.14)

Since

∫
R

J(y)φ̂(ε – y)dy =
∫ –Υ

–∞
J(ε – y)s(y)dy +

∫ Υ

–Υ

J(ε – y)φ(y)dy +
∫ +∞

Υ

J(ε – y)φ(Υ )dy,

we have

∣∣∣∣
∫
R

J(y)(φ̂1(‘ε – y) – φ̂2(ε – y))dy
∣∣∣∣ ≤ 2 max

y∈[–Υ ,Υ ]
|φ1(y) – φ2(y)|. (4.15)

Since i+(ε) ≤ eΛ1ε for ε ∈ [–Υ ,Υ ], for any (φ1,ϕ1), (φ2,ϕ2) ∈ ΓΥ (ε), then

∣∣∣∣λφ1(ε)ϕ1(ε) – λφ2(ε)ϕ2(ε)

∣∣∣∣ ≤ M4

[∣∣φ1(ε) – φ2(ε)
∣∣ +

∣∣ϕ1(ε) – ϕ2(ε)
∣∣
]

, (4.16)

with M4 = sup

{
λs0,λσeΛ1ε : 0 ≤ σ ≤ s0

}
.

Put u(ε) = σ |sΥ ,1(ε) – sΥ ,2(ε)|. Therefore, from (4.14)–(4.16), we get

u′(ε) = σ sign(sΥ ,1(ε) – sΥ ,2(ε))(s′
X,1(ε) – s′

Υ ,2(ε)),
≤ 2d1 maxy∈[–Υ ,X ] |φ1(y) – φ2(y)| – (d1 + μ – M4)|sΥ ,1(ε) – sΥ ,2(ε)|

+M4|ϕ2(ε) – ϕ1(ε)| – ρ|ϕ2(ε) – ϕ1(ε)|,
=

(
d1+μ

σ
+ M4

σ

)
u(ε) + 2d1 maxy∈[–Υ ,Υ ] |φ1(y) – φ2(y)| + (M4 – ρ)|ϕ2(ε) – ϕ1(ε)|.
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Thus, for all ε ∈ [–Υ ,Υ ], we obtain

u(ε) ≤ u(–Υ )e–
( d1+μ

σ + M4
σ

)
(ε+X) +

∫ ε

–Υ

[(
2d1 max

y∈[–Υ ,Υ ]
|φ1(y) – φ2(y)|

)

+M4 maxy∈[–Υ ,Υ ] |ϕ1(y) – ϕ2(y)|
]

e–
( d1+μ

σ + M4–ρ
σ

)
(ε–τ )dτ .

(4.17)

From (4.17), we ultimately obtain ‖u(ε)‖ΓΥ (ε) → 0 since u(–Υ ) = 0. This is equivalent to
‖(φ2,ϕ2) – (φ1,ϕ1)‖ΓΥ (ε) → 0. F1 is therefore continuous on ΓΥ (ε). Using a similar logic,
we determine that F2 is continuous. □

Lemmas 4.3 and 4.4, Schauder’s fixed point theorem, and the fact that ΓΥ (ε) is closed
and convex make the following conclusion true.

Theorem 4.5 F admits at least one fixed point (s∗
Υ (ε), i∗Υ (ε)) ∈ ΓΥ (ε).

This is followed by several previous estimations for the fixed point (s∗
Υ (ε), i∗Υ (ε)). The

value of F in C1,1([–Υ ,Υ ],R2), in which

C1,1([–Υ ,Υ ]) = {u ∈ C1([–Υ ,Υ ],R2) : u and u′ are Lipschitz continuous},

endowed with the norm

‖u‖C1,1([–Υ ,Υ ]) = max
x∈[–Υ ,Υ ]

|u(x)| + max
x∈[–Υ ,Υ ]

|u′(x)| + sup
x,y∈[–‘Υ ,Υ ],x �=y

|u′(x) – u′(y)|
|x – y| . (4.18)

Then, we get the result below.

Lemma 4.6 Let (s∗
Υ (ε), i∗Υ (ε)) be the fixed point of mapF . Therefore, ‖s∗

X(ε)‖C1,1([–Υ ,Υ ]) ≤ C
and ‖i∗Υ (ε)‖C1,1([–Υ ,Υ ]) ≤ C, ∀Υ > max{|ε∗|, |ε0|, r}.

Proof Obviously, we have

{
σ s∗′

Υ (ε) = d1J ∗ s∗
Υ (ε) – d1s∗

Υ (ε) + χ – μs∗
Υ (ε) – λs∗

Υ (ε)i∗Υ (ε) + ρi∗Υ (ε),
σ i∗′

Υ (ε) = d2J ∗ i∗Υ (ε) – (d2 + μ + ρ)i∗Υ (ε) + λs∗
Υ (ε – σς)i∗Υ (ε – σς),

(4.19)

for ε ∈ [–Υ ,Υ ], where

ŝΥ (ε) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s∗
Υ (Υ ), ε > Υ ,

s∗
Υ (ε), |ε| ≤ Υ ,

s–(Υ ), ε < –Υ ,

îΥ (ε) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i∗Υ (X), ε > Υ ,

i∗Υ (ε), |ε| ≤ Υ ,

i–(Υ ), ε < –Υ .

Since s∗
Υ (ε) ≤ s0 and i∗Υ (ε) ≤ eΛ1ε for ε ∈ [–Υ ,Υ ], and (4.19), we can obtain

|s∗′
Υ (ε)| ≤ 1

σ
(2d1s0 + χ + μs0 + λs0eΛ1ε := L1, (4.20)

|i∗′
Υ (ε)| ≤ 1

σ
(2d2eΛ1ε + (μ + ρ)eΛ1ε + λs0eΛ1ε := L2. (4.21)
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Thus,

|s∗
Υ (ε) – s∗

Υ (η)| ≤ L1|ε – η|, |i∗Υ (ε) – i∗Υ (η)| ≤ L2|ε – η|. (4.22)

By (4.19), (4.20), and (4.21), we further obtain

σ |s∗′
Υ (ε) – s∗′

Υ (η)|

≤ d1

∫ +∞

–∞
J(y)(ŝΥ (ε – y) – ŝΥ (η – y)) dy + (d1 + μ)|s∗

Υ (ε) – s∗
Υ (η)|

+
∣∣∣∣λs∗

Υ (ε)i∗Υ (ε) – λs∗
Υ (η)i∗Υ (η)

∣∣∣∣ – ρ
∣∣i∗Υ (ε) – i∗Υ (η)

∣∣, (4.23)

and

σ |i∗′
Υ (ε) – i∗

′
Υ (η)|

≤ d2

∫ +∞

–∞
J(y)(îΥ (ε – y) – îΥ (η – y)) dy + (d2 + μ + ρ)|i∗Υ (ε) – i∗Υ (η)|

+
∣∣∣∣λs∗

Υ (ε – σς)i∗Υ (ε – σς) – λs∗
Υ (η – σς)i∗Υ (η – σς)

∣∣∣∣. (4.24)

Let [–r, r] be J(x)’s compact support. Since J(x) is a C1-function, J(x) ≤ LJ is verified by the
constant LJ > 0. ∀x1, x2 ∈ [–r, r], and therefore |Jn(x1) – Jn(x2)| ≤ LJ |x1 – x2|. Consequently,
we deduce that

∫ +∞

–∞
J(y)ŝΥ (ε – y) dy –

∫ +∞

–∞
J(y)ŝΥ (η – y) dy =

∫ ε–r

η–r
J(y)sΥ (y) dy +

∫ η+r

ε+r
J(y)sΥ (y) dy

+
∫ ε+r

η–r
(J1(y – η) – J(y – ε))sΥ (y) dy

≤ 4LJ rs0|ε – η|.

Likewise, we get

∫ +∞

–∞
J(y)îΥ (ε – y) dy –

∫ +∞

–∞
J(y)îΥ (η – y) dy ≤ 4LJ reΛ1ε |ε – η|.

Then, it follows from (4.16) and (4.22) that
∣∣∣∣λs∗

Υ (ε – σς)i∗Υ (ε – σς) – λs∗
Υ (η – σς)i∗Υ (η – σς))

∣∣∣∣ ≤ M4(L1 + L2)|ε – η|. (4.25)

Combining (4.23)–(4.25), we know

|s∗′
Υ (ε) – s∗′

Υ (η)| ≤ Cs|ε – η| and |i∗′
Υ (ε) – i∗

′
Υ (η)| ≤ Ci|ε – η|,

where

Cs =
1
σ

(4d1LJ rs0 + (d1 + μ)L1 + M4(L1 + L2)),

Ci =
1
σ

(4d2LJ reΛ1ε + (d2 + μ + ρ)L2 + M4(L1 + L2)).
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Consequently, we have that

‖s∗
X(ε)‖C1,ε ([–X,X]) ≤ C

and

‖i∗X(ε)‖C1,ε ([–X,X]) ≤ Ci,

where C = max{s0 + L1 + Cs, eΛ1ε + L2 + Ci}. □

4.3 Existence of a noncritical TWS
Theorem 4.7 If R0 > 1 and σ > σ ∗, then (2.3) has a solution (s∗(ε), i∗(ε)) defined for ε ∈R

that satisfies s–(ε) ≤ s∗(ε) ≤ s0, i–(ε) ≤ i∗(ε) ≤ i+(ε) for ε ∈R.

Proof A series {Υn}∞n=1 that fulfils limn→∞ Υn = +∞ and Υn > max{|ε∗|, |ε0|, r} should be
defined. Schauder’s fixed point theorem states that for every Υn, there is a fixed point
(s∗

Υn (ε), i∗Υn (ε)) ∈ ΓΥn (ε) of map F . Lemma 4.6 states that n = 1, 2, . . . , and
‖s∗

Υn (ε)‖C[1–α,Υn ,Υn] ≤ Ci and ‖i∗Υn (ε)‖C[1–α,Υn ,Υn] ≤ C. The uniform boundedness and
equicontinuity of {(s∗′

Υn (ε), i∗′
Υn (ε)) and {(s∗

Υn (ε)i∗Υn (ε)) for any integer k are due to the fact
that n ≥ k. Therefore, the Arzelà-Ascoli theorem and the diagonal extraction technique
ensure that a subsequence {(s∗

Υm (ε), i∗Υm (ε))} fulfilling
{(s∗′

Υm (ε), i∗′
Υm (ε))} converge uniformly in each [–Xk , Xk]. (k = 1, 2, . . .), m → ∞.

Let limm→∞(s∗
Υm (ε), i∗Υm (ε)) = (s∗(ε), i∗(ε)), then we have

limm→∞(s∗′
Υm (ε), i∗′

Υm (ε)) = (s∗′
(ε), i∗′

(ε)). Let r be the supported radius of J1(ε) and J2(ε).
Since (s∗

Υm (ε), i∗Υm (ε)) ≤ (s+∗(ε), i+∗(ε)) for ε ∈R and m = 1, 2, . . . , using the Lebesgue dom-
inated convergence theorem, it follows that

lim
m→∞

∫
R

J(ε)s∗
Υm (ε – y)dε = lim

m→∞

∫ r

–r
J(ε)s∗

Υm (ε – y)dε = J ∗ s∗(ε).

Likewise, limm→∞ i∗Υm (ε) = J ∗ i∗(ε) may be obtained. Consequently, (s∗(ε), i∗(ε)) satisfies
(2.3), and for ε ∈R, s–(ε) ≤ s∗(ε) ≤ s0 and i–(ε) ≤ i∗(ε) ≤ i+(ε).

The next step demonstrates that s0 > s∗(ε) > 0 and i∗(ε) > 0. Given that s(–∞) = s0 > 0, if
ε00 ∈R exists, ∀ε ∈ (–∞, ε00), then s′(ε00) ≤ 0, confirming that s(ε00) = 0 and s(ε) > 0. The
first equation of (2.3) provides

d1

∫ +∞

–∞
J(y)s(ε00 – y)dy + χ ≤ 0.

This is a contradiction. Thus, s∗(ε) > 0, ∀ε ∈R. Likewise, we obtain i∗(ε) > 0, ∀ε ∈R. Now,
we prove s∗(ε) < s0. Assume that there is ε00 ∈ R satisfying s∗(ε00) = s0, then, s∗′

(ε00) ≥ 0.
Together with the first equation of (2.3), it yields

d1

∫ +∞

–∞
J(y)(s(ε00 – y) – s0)dy + χ – μs0 – λs∗(ε00)i∗(ε00) + ρi∗(ε00) ≥ 0,

that is,

d1

∫ +∞

–∞
J(y)(s(ε00 – y) – s0)dyλs∗(ε00)i∗(ε00)) ≥ 0,



Darazirar et al. Boundary Value Problems         (2025) 2025:67 Page 14 of 21

this is a contradiction with s∗(ε00 – y) – s0 ≤ 0 and L(s∗(ε00), i∗(ε00)) > 0. Thus, s∗(ε) < s0,
∀ε ∈R. □

Theorem 4.8 Let R0 > 1 and σ > σ ∗, then (2.3) has a solution (s∗(ε), i∗(ε)) defined for ε ∈R

satisfying limε→∞(s∗(ε), i∗(ε)) = (s0, 0), 0 < s∗(ε) ≤ s0, and i∗(ε) > 0 for ε ∈ R.

Proof By Theorem 4.7, there is a solution sequence Φn(ε) = (s∗
n(ε), i∗n(ε)), n ∈N

∗ and ε ∈R,
verifying

{
σ s∗′

n (ε) = d1J ∗ s∗
n(ε) – d1s∗

n(ε) + χ – μs∗
n(ε) – λs∗

n(ε)i∗n(ε) + ρi∗n(ε),
σ i∗′

n (ε) = d2J ∗ i∗n(ε) – (d2 + μ + ρ)i∗n(ε) + λs∗
n(ε – σς)i∗n(ε – σς),

(4.26)

and

s(ε) < s∗
n(ε) ≤ s0, i(ε) ≤ i∗n(ε) ≤ i(ε), s∗

n(ε) > 0, i∗n(ε) > 0, ε ∈R,

because (eΛ1ε)n → +∞ in the range [–1, 1]. {Φn(ε)} is uniformly confined on [–1, 1] as a
result. We guarantee that {Φn(ε)} and {Φ′

n(ε)}, n > n1, are both equicontinuous and uni-
formly bounded on [–1, 1] by (4.26). According to the Arzelà-Ascoli theorem, {Φ1,m(ε)} is
a subsequence of {Φn(ε)} that satisfies {Φ1,m(ε)} and {Φ′

1,m(ε)}, which converges uniformly
on [–1, 1] as m → ∞. i′1,m(ε) ≤ e1+ε , ∀ε ∈ [–1, 1], is also true.

Subsequences {Φk–1,m(ε)} of {Φk–2,m(ε)} satisfying {Φk–1,m(ε)} and {Φ′
k–1,m(ε)} converge

uniformly on [–k – 1, k – 1] when m → ∞ are chosen in [–k – 1, k – 1]. (eΛ1ε)k–1,m ≤ e1+ε ,
∀ε ∈ [–k – 1, k – 1], are also exist. As a result, in [–k, k], we obtain i∗k,m(ε) ≤ e1+ε , ε ∈ [–k, k],
as (eΛ1ε)k–1,m is uniformly confined on [–k, k].

Therefore, {Φk,m(ε)} is uniformly confined on [–k, k] for m > mk . Both {Φk–1,m(ε)} and
{Φ′

k–1,m(ε)} are equicontinuous and uniformly bounded on [–k, k], as demonstrated by
the proof of Lemma 4.6. {Φk,m(ε)} is a subsequence of {Φk–1,m(ε)} that satisfies {Φk,m(ε)}
and {Φ′

k,m(ε)} converges uniformly on [–k, k] as a result for m → ∞. i∗k,m(ε) ≤ eΛ1ε , ∀ε ∈
[–k, k]. Moreover, the diagonal extraction approach suggests that any [–k, k](k = 1, 2, 3, . . .)
has subsequences {Φm,m(ε)} and {Φ′

m,m(ε)} that converge uniformly. Let {Φm,m(ε)} →
(s∗(ε), i∗(ε)) be m → +∞. {Φ′

m,m(ε)} → (s∗′
(ε), i∗′

(ε)) for m → +∞, as a result. Since for
every m ∈N

∗, we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ s∗′
m,m(ε)

= d1J ∗ s∗
m,m(ε) – d1s∗

m,m(ε) + χ – μs∗
m,m(ε) – λs∗

m,m(ε)i∗m,m(ε) + ρi∗m,m(ε),
σ i∗′

m,m(ε)

= d2J ∗ i∗m,m(ε) – (d2 + μ + ρ)i∗m,m(ε) + λs∗
m,m(ε – σς)i∗m,m(ε – σς).

(4.27)

Taking m → +∞ and using the continuity of λs(ε)i(ε) function and the dominated con-
vergence theorem gives

{
σ s∗′

(ε) = d1J ∗ s∗(ε) – d1s∗(ε) + χ – μs∗(ε) – λs∗(ε)i∗(ε) + ρi∗(ε),
σ i∗′

(ε) = d2J ∗ i∗(ε) – (d2 + μ + ρ)i∗(ε) + λs∗(ε – σς)i∗(ε – σς),
(4.28)

for each and every ε ∈ R. In other words, the solution to (2.3) for ε ∈ R is (s∗(ε), i∗(ε)).
s(ε) < s∗(ε) ≤ s0 and i(ε) ≤ i∗(ε), ε ∈ R are the results of (4.26). We additionally ob-
tain i∗(ε) ≤ eΛ1ε , ε ∈ R, i∗m,m(ε) ≤ eΛ1ε , ∀ε ∈ [–k, k], and m ≥ k. (s∗(ε), i∗(ε)) confirms
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limε→–∞(s∗(ε), i∗(ε)) = (s0, 0), according to the upper-lower solutions. As in Theorem 4.7,
we similarly obtain 0 < s∗(ε) < s0, ∀ε ∈R. Likewise, if ε′ ∈R, then i∗(ε′) = 0 is verified, and
i∗(ε) > 0, ∀ε ∈ (–∞, ε′). It is evident that i∗′

(ε′) ≤ 0 for ε′ > ε0. The second equation of
(4.28) then gives us

σ i∗
′
(ε′) = d2J ∗ i∗(ε′) – (d2 + μ + ρ)i∗(ε′) + λs∗(ε′ – σς)i∗(ε′ – σς) > 0.

This is a contradiction. Then, i∗(ε) > 0, ∀ε ∈ R. □

The definition of (s∗(ε), i∗(ε)) may be found in Theorem 4.8. (s∗(ε), i∗(ε)) → (s∗, i∗) as
ε → +∞ in order to get the asymptotic boundary condition. Using the Lyapunov-LaSalle
theorem, we must demonstrate that (s∗(ε), i∗(ε)) → (s∗, i∗) as ε → ∞ in order to establish
the existence of noncritical TWS. The following highlights the results that were obtained

Lemma 4.9 (s∗(ε), i∗(ε)) → (s∗, i∗) uniformly as ε → +∞.

Proof We define the Lyapunov functional V by

V (ε) = V1(ε) + V2(ε), (4.29)

where

V1(ε) = σ

(
1
2 (s(ε) – s∗)2 + μ+ρ

λ
i∗h

(
i(ε)
i∗

))
+ d1s∗K1(ε) + d2i∗ μ+ρ

λ
K2(ε),

V2(ε) = μ+ρ

λ
λs∗i∗

∫ σς

0
h
(

s(ε – ε)i(ε – ε)

s∗i∗

)
dε.

It is evident that h(x) > 0 for every x > 0 when h(x) = x – 1 – ln(x), x ∈ R
+. With

∫ +∞

0
a+h

(
s(ε – y)

s∗

)
dy –

∫ 0

–∞
a–h

(
s(ε – y)

s∗

)
dy,

and

K2(ε) =
∫ +∞

0
a+h

(
i(ε – y)

i∗

)
dy –

∫ 0

–∞
a–h

(
i(ε – y)

i∗

)
dy,

s(ε) > 0, i(ε) > 0, and [40, Theorem 1] allow us to conclude that K1(ε), K2(ε) are limited
from below. Thus, V (s, i)(ε) is bounded from below and properly defined. We have a±

satisfying a±(0) = 1
2 , da+(y)

dy = J(y), and da–(y)
dy = –J(y).

dK1(ε)

dε
= h

(
s
s∗

)
–

∫ +∞

–∞
J(y)h

(
s(ε – y)

s∗

)
dy,

and

dK2(ε)

dε
=

μ + ρ

λ

(
h
(

i
i∗

)
–

∫ +∞

–∞
J(y)h

(
i(ε – y)

i∗

)
dy

)
.
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Now, we compute dV2(ε)
dε

dV2(ε)
dε

= μ+ρ

λ
d

dε

(
s∗i∗)

∫ σς

0
h
(

s(ε – ε)i(ε – ε)

s∗i∗

)
dε,

= – μ+ρ

λ
λs∗i∗

[(
s(ε–σς )i(ε–σς )

s∗i∗

)
– 1 – ln

(
s(ε–σς )i(ε–σς )

s∗i∗

)
–

(
s(ε)i(ε)

s∗i∗

)

+ 1 + ln
(

s(ε)i(ε)
s∗i∗

)]
.

Note that (s∗, i∗) satisfies

{
χ = μs∗ + λs∗i∗ – ρi∗,
(μ + ρ)i∗ = λs∗i∗.

Then, we obtain

dV1(ε)
dε

=
(

s(ε) – s∗
)(

d1(J ∗ s(ε) – s(ε)) + χ – μs(ε) – βs(ε)i(ε) + ρi(ε)

)

+ μ+ρ

λ

(
1 – i∗

i(ε)

)(
d2(J ∗ i(ε) – i(ε)) + λs(ε – σς)i(ε – σς) + βs(ε)i(ε)

–βs(ε)i(ε) – (μ + ρ)i(ε)

)

+h
(

s
s∗

)
–

∫ +∞

–∞
J(y)h

(
s(ε – y)

s∗

)
dy + h

(
i
i∗

)

–
∫ +∞

–∞
J(y)h

(
i(ε – y)

i∗

)
dy,

= Q1 + Q2,

Q1(ε) = s(ε)

(
1 – s∗

s(ε)

)
(d1(J ∗ s(ε) – s(ε))) + d2i∗

(
h
(

s(ε)
s∗

)
–

∫ +∞

–∞
J(y)h

(
s(ε – y)

s∗

)
dy

)

+ μ+ρ

λ

[(
1 – i∗

i(ε)

)
(d2(J2 ∗ i(ε) – i(ε)))

+d2i∗
(

h
(

i(ε)
i∗

)
–

∫ +∞

–∞
J(y)h

(
i(ε – y)

i∗

)
dy

)]
.

For Q1, ln
(

s
s∗

)
= ln

(
s(ε–y)

s∗

)
– ln

(
s(ε–y)

s(ε)

)
and ln

(
i

i∗

)
= ln

(
i(ε–y)

i∗

)
– ln

(
i(ε–y)

i(ε)

)

s(ε)

[(
1 – s∗

s(ε)

)
(d1(J ∗ s(ε) – s(ε))) + d1

s∗
s(ε)

(
h
(

s(ε)
s∗

)
–

∫ +∞

–∞
J(y)h

(
s(ε – y)

s∗

)
dy

)]
,

= –d1
s∗

s(ε)

∫ +∞

–∞
J(y)h

(
s(ε – y)

s(ε)

)
dy,

and

μ+ρ

λ

[(
1 – i∗

i(ε)

)
(d2(J ∗ i(ε) – i(ε))) + d2i∗

(
h
(

i(ε)
i∗

)
–

∫ +∞

–∞
J2(y)h

(
i(ε – y)

i∗

)
dy

)]
,

= μ+ρ

λ

[
d2i∗

∫ +∞

–∞
J(y)

[
i(ε – y)

i∗
–

i(ε – y)

i(ε)
– ln(

s(ε)

s∗ )

]
dy –

∫ +∞

–∞
J2(y)h

(
i(ε – y)

i∗

)
dy

]
,

= μ+ρ

λ

[
d2i∗

∫ +∞

–∞
J(y)

[
h
(

i(ε – y)

i∗

)
– h

(
i(ε – y)

i(ε)

)]
dy –

∫ +∞

–∞
J2(y)h

(
i(ε – y)

i∗

)
dy

]
,

= – μ+ρ

λ
d2i∗

∫ +∞

–∞
J(y)h

(
i(ε – y)

i(ε)

)
dy.
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Q2(ε) =
(

s(ε) – s∗
)(

χ – μs(ε) – βs(ε)i(ε) + ρi(ε)

)

+ μ+ρ

λ

(
1 – i∗

i(ε)

)(
λs(ε – σς)i(ε – σς) + βs(ε)i(ε) – βs(ε)i(ε) – (μ + ρ)i(ε)

)
.

Then, we have

dV (ε)
dε

=
(

s(ε) – s∗
)(

χ – μs(ε) – βs(ε)i(ε) + ρi(ε)

)

+ μ+ρ

λ

(
1 – i∗

i(ε)

)(
λs(ε – σς)i(ε – σς) + βs(ε)i(ε) – βs(ε)i(ε) – (μ + ρ)i(ε)

)

– μ+ρ

λ
λs∗i∗

[(
s(ε–σς )i(ε–σς )

s∗i∗

)
– 1 – ln

(
s(ε–σς )i(ε–σς )

s∗i∗

)
–

(
s(ε)i(ε)

s∗i∗

)

+1 + ln
(

s(ε)i(ε)
s∗i∗

)]

–d1
s∗

s(ε)

∫ +∞

–∞
J(y)h

(
s(ε – y)

s(ε)

)
dy –

μ + ρ

λ
d2i∗

∫ +∞

–∞
J(y)h

(
i(ε – y)

i(ε)

)
dy.

By [[41] Sect. 2.1], we get dV (ε)
dε

≤ 0 and dV (ε)
dε

= 0 if s(ε) = s∗, i(ε) = i∗.
In conclusion, we determine that (s, i)(∞) = (s∗, i∗) and keep in mind that the orbital

derivative of V along Ψ (ε) is nonpositive.
Moreover, it is evident that V is continuous and confined below on D. Ψ (ε) → (s∗, i∗) as

ε → ∞, and consequently, (s, i) → (s∗, i∗) as ε → +∞, according to this and the Lyapunov-
LaSalle theorem. This completes the proof. □

Lemma 4.2 states that the solution of (2.3) satisfies s– ≤ s(ε) ≤ s+, i– ≤ i(ε) ≤ i+, and
(s, i) → (s0, 0) as ε → –∞. Lemma 4.9 says that (s, i) → (s∗, i∗) = ε → +∞. We conclude
that the system (2.3) accepts the traveling wave solution of the system (1.1), and this is the
sole positive solution that satisfies the (2.4) boundary requirements.

5 Existence of a critical traveling wave solution
This section aims to prove that (2.3) admits a TWS for R0 > 1 and σ = σ ∗.

Lemma 5.1 If R0 > 1, and σ = σ ∗. Let

s+(ε) = s0, i+ = eΛ∗ε ,

s– = max

{
s0 – Meγ ε , 0

}
, i–(ε) = max{eΛ∗ε(1 – Jeηε), 0},

for some positive constants γ , J and M, then (4.1)–(4.4) are satisfied.

Since the proof may be accomplished similarly to the proof of Lemma 4.2, we do not
provide it here. By replacing σ by σ ∗ and Λ1 by Λ∗, the same process as in Sect. 2 is used
to deduce the existence of a TWS for σ = σ ∗.

6 Numerical simulation
Initially, we provide a few numerical examples to confirm the TWS of (1.1) see Fig. 1,
which links the two equilibria. To achieve this, we consider the basic conditions listed
below:

S0(x) =

{
5 if x ∈ [–10, 0],
2 if x ∈ [0, 10],
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Figure 1 The existence of TWS for the system (2.1), where χ = 0.5, λ = 0.1, μ = 0.1, ρ = 0.05 and R0 = 4.45 > 1

I0(x) =

{
0 if x ∈ [–10, 0],
0.35 if x ∈ [0, 10].

We also adopt the kernel function as

J(x) =

{
Ce

1
x2–1 , –0.5 < x < 0.5

0, otherwise,

with C = 0.5 satisfying
∫ 0.5

–0.5 J(x)dx = 1.

7 Discussion
In this paper, we have analyzed the existence and qualitative properties of traveling wave
solutions (TWS) for a time-delayed nonlocal SIS epidemic model. Based on our com-
prehensive analysis, it is rigorously shown that the occurrence of nontrivial TWS heavily
depends on the basic reproduction number R0 and the wave speed σ . Especially, we have
proved that for R0 > 1, traveling wave solutions are valid for all wave speeds σ ≥ σ ∗ with
σ ∗ being the lowest wave speed, and they are not valid if σ < σ ∗. The above facts have been
derived through the Schauder fixed point theorem, the construction of upper and lower
solutions, and rigorous examination of a truncated problem.

Mathematically, the addition of both nonlocal dispersion and delay is a more realistic
configuration to mathematically model the spatial-temporal dispersion of infectious dis-
eases, especially in relation to the current human movement and latency of infection of
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the disease. The nonlocal term is used to capture long-range interactions, which become
increasingly relevant today because of rapid transport and globalization, and the delay is
used to produce such phenomena as incubation periods and delayed behavioral response.

In addition, our work generalizes the classical reaction-diffusion models by introducing
more complex dynamics, thus shedding new light on how spatial heterogeneity and time
delays influence epidemic spreading. The derivation of the minimum wave speed σ ∗ also
has practical implications for estimating thresholds for disease invasion and for planning
control measures to prevent or impede the spreading of infectious diseases.

The quantitative solutions provided in Sect. 6 illustrate again the character and behavior
of the traveling wave solutions under different parameter settings. These solutions not
only affirm the analytical forecast but also illustrate how different parameter adjustments
impact the wavefront and rate of disease spread.

While this work provides a good theoretical foundation, future research can explore
the specificity and stability of the traveling wave solutions and the solutions’ behavior un-
der perturbations. Further studies of the model in multi-dimensional spatial spaces or in
heterogeneous media can yield further insights. Incorporation of stochastic effects and
empirical epidemiological evidence can also make the model more applicable to practical
disease control.
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