Fuzzy orbit topological space is a new structure very recently given by [1]. This new space is based on the notion of open fuzzy orbit sets. The aim of this paper is to provide applications of open fuzzy orbit sets. We introduce the notions of fuzzy orbit irresolute mappings and fuzzy orbit open (resp. irresolute open) mappings and studied some of their properties. .
Flying Ad hoc Networks (FANETs) has developed as an innovative technology for access places without permanent infrastructure. This emerging form of networking is construct of flying nodes known as unmanned aerial vehicles (UAVs) that fly at a fast rate of speed, causing frequent changes in the network topology and connection failures. As a result, there is no dedicated FANET routing protocol that enables effective communication between these devices. The purpose of this paper is to evaluate the performance of the category of topology-based routing protocols in the FANET. In a surveillance system involving video traffic, four routing protocols with varying routing mechanisms were examined. Additionally, simulation experiments conduct
... Show MoreForm the series of generalization of the topic of supra topology is the generalization of separation axioms . In this paper we have been introduced (S * - SS *) regular spaces . Most of the properties of both spaces have been investigated and reinforced with examples . In the last part we presented the notations of supra *- -space ( =0,1) and we studied their relationship with (S * - SS *) regular spaces.
The concept of -closedness, a kind of covering property for topological spaces, has already been studied with meticulous care from different angles and via different approaches. In this paper, we continue the said investigation in terms of a different concept viz. grills. The deliberations in the article include certain characterizations and a few necessary conditions for the -closedness of a space, the latter conditions are also shown to be equivalent to -closedness in a - almost regular space. All these and the associated discussions and results are done with grills as the prime supporting tool.
The primary aim of this paper, is to introduce the rough probability from topological view. We used the Gm-topological spaces which result from the digraph on the stochastic approximation spaces to upper and lower distribution functions, the upper and lower mathematical expectations, the upper and lower variances, the upper and lower standard deviation and the upper and lower r th moment. Different levels for those concepts are introduced, also we introduced some results based upon those concepts.
The theory of Topological Space Fiber is a new and essential branch of mathematics, less than three decades old, which is created in forced topologies. It was a very useful tool and played a central role in the theory of symmetry. Furthermore, interdependence is one of the main things considered in topology fiber theory. In this regard, we present the concept of topological spaces α associated with them and study the most important results.
In this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise closure topological spaces, fibrewise wake topological spaces, fibrewise strong topological spaces over B. Also, we introduce the concepts of fibrewise w-closed (resp., w-coclosed, w-biclosed) and w-open (resp., w-coopen, w-biopen) topological spaces over B; Furthermore we state and prove several Propositions concerning with these concepts.
The effect of the tensor term in the Skyrme interaction has been estimated in calculating the static and dynamic nuclear properties in sd and fp-shell model spaces nuclei. The nuclear shell gaps have been studied with different Skyrme parameterizations; Skxta and Skxtb with tensor interaction, SkX, SkM, and SLy4 without tensor interaction, and Skxcsb with consideration of the effect of charge symmetry breaking. We have examined the stability of N = 28 for 42Si and 48Ca. The results showed that the disappearance of the magicity occurs in the shell closure of 42Si. Furthermore, excitation energy, quadrupole deformation, neutron separation energy, pairing energy, and density profile have also been calculated. Quadrupole deformation indicates a
... Show MoreThe theory of general topology view for continuous mappings is general version and is applied for topological graph theory. Separation axioms can be regard as tools for distinguishing objects in information systems. Rough theory is one of map the topology to uncertainty. The aim of this work is to presented graph, continuity, separation properties and rough set to put a new approaches for uncertainty. For the introduce of various levels of approximations, we introduce several levels of continuity and separation axioms on graphs in Gm-closure approximation spaces.
In this paper introduce some generalizations of some definitions which are, closure converge to a point, closure directed toward a set, almost ω-converges to a set, almost condensation point, a set ωH-closed relative, ω-continuous functions, weakly ω-continuous functions, ω-compact functions, ω-rigid a set, almost ω-closed functions and ω-perfect functions with several results concerning them.
In this thesis, we study the topological structure in graph theory and various related results. Chapter one, contains fundamental concept of topology and basic definitions about near open sets and give an account of uncertainty rough sets theories also, we introduce the concepts of graph theory. Chapter two, deals with main concepts concerning topological structures using mixed degree systems in graph theory, which is M-space by using the mixed degree systems. In addition, the m-derived graphs, m-open graphs, m-closed graphs, m-interior operators, m-closure operators and M-subspace are defined and studied. In chapter three we study supra-approximation spaces using mixed degree systems and primary object in this chapter are two topological
... Show More