ils.

وزارة التعليم العاليي والبدئد العلمي رئامة المامعة المستنصرية 2.2 كلية التربية

مجلة كلية التربية

قمكمم - قيملا - قابم

وقائم مؤتمر كلية التربية السابع عشر للمدة من 5–6 أيار 2010

تحت شعار

((بالعلم والعرفة نبني عراق الستقبل))

360

5-6 May 2010

Some Generalizations of Continuity Functions

Yousif Y. Yousif

Department of Mathematics, College of Education Ibn AL-Haitham, University of Baghdad

الخلاصة

في هذا البحث عرفنا ودرسنا تعميمات جديدة من الدوال المستمرة سسميناها السدوال المستمرة الضعيفة (المغلقة، القوية) من النمط $-\omega$. واهم الخواص التي درست هي: (أ) أذا كان $X \rightarrow Y$: $f: X \rightarrow Y$ الدوال مستمرة ضعيفة (مغلقة، قوية) من السنمط $-\omega$. فيان Y مجموعيه $X \rightarrow X$ و آي $Y \rightarrow Y$ الدوال المقبصورة $Y \rightarrow X \rightarrow Y$ و $Y \rightarrow X$ و آي $Y \rightarrow X \rightarrow Y$ الدوال المقبصورة $Y \rightarrow X \rightarrow Y$ الدوال مستمرة ضعيفة (مغلقة، قوية) من النمط $-\omega$. (ب) المقارنة بين مختلف أشكال تعميمات الدوال المستمرة. اضافة لناك المستمرة. (ج) العلاقة بين تركيب مختلف أشكال تعميمات الدوال المستمرة الضعيفة (المغلقة، القوية) من السنمط $-\omega$ على الاغلب. كذلك اعطينا وبرهنا العديد من النتائج المتعلقة بها.

Abstract

In this paper we define and study new generalizations of continuous functions namely, ω -weakly (resp., ω -closure, ω -strongly) continuous and the main properties are studies: (a) If $f: X \rightarrow Y$ is ω -weakly (resp., ω -closure, ω -strongly) continuous, then for any $A \subset X$ and any $B \subset Y$ the restrictions $f|_A: A \rightarrow Y$ and $f_B: f^{-1}(B) \rightarrow B$ are ω -weakly (resp., ω -closure, ω -strongly) continuous. (b) Comparison between different forms of generalizations of continuous functions. (c) Relationship between compositions of deferent forms of generalizations of continuous functions. Moreover, we expanded the above generalizations and namely almost ω -weakly (resp., ω -closure, ω -strongly) continuous functions and we state and prove several results concerning it.

1. Introduction and Notations.

Continuity functions are a fairly old concept studied by many mathematicians and first considered by M. Frechet (1) in 1910. In this

361

5-6 May 2010

paper we introduce some new generalizations of continuous functions and expanded these generalizations.

 ω , denotes the cardinal number of integers. For a subset A of a spaces X, the closure of A denoted by cl(A). For other notions or notations not defined here we follow closely N. Bourbaki (2).

2. Basic Definitions.

Definition 2.1 (3, 4, and 5)

A function $f: X \rightarrow Y$ is called weakly (resp., closure, strongly) continuous at a point $x \in X$ if given any open set V containing f(x) in Y, there exists an open set U containing x in X such that $f(U) \subseteq cl(V)$ (resp., $f(cl(U)) \subseteq cl(V)$, $f(cl(U)) \subseteq V$).

If this condition is satisfied at each point $x \in X$, then f is said to be weakly (resp., closure, strongly) continuous.

Definition 2.2 (2)

A point x of a space X is called a condensation point of the set $A \subseteq X$ if every nbd of the point x contains an uncountable subset of this set.

Definition 2.3 (6)

A subset of a space X is called ω -closed if it contains all its condensation points. The complement of a ω -closed set is called ω -open set. Also the ω -closed of a set A is the intersection of all ω -closed sets which contains A, and denoted by $cl^{\omega}A$. i.e., $cl^{\omega}A=\cap\{F\colon F \text{ is } \omega\text{-closed and } A\subseteq F\}$, then A is ω -closed iff $A=cl^{\omega}A$.

Observe that A is ω -open iff for every $x \in A$ there is an open nbd U of x such that U-A is countable.

3. Basic Results.

The first new concepts in this paper are given now.

Definition 3.1

A function $f: X \rightarrow Y$ is called ω -weakly (resp., ω -closure, ω -strongly) continuous, if for each point $x \in X$ and every open set V of f(x) in Y, there exists an open set U containing x in X such that $f(U) \subseteq cl^{\omega}(V)$ (resp., $f(cl^{\omega}(U)) \subseteq cl^{\omega}(V)$, $f(cl^{\omega}(U)) \subseteq V$).

Definition 3.2

A space X is called ω -Urysohn if for every $x\neq y\in X$, there exists an open set U containing x and an open set V containing y such that $cl^{\omega}(U)\cap cl^{\omega}(V)=\phi$.

Clearly cl(A)⊆cl[®]A, but not equal as it is shown in the next example.

362

5-6 May 2010

Example 3.3

Let (IR, τ_{cof}) be the cofinite topology on IR, then every finite subset of IR is closed, but the ω -closure of every non empty set is IR.

It is well-known that if $f: X \rightarrow Y$ is continuous, then for any $A \subset X$ and any $B \subset Y$ the restrictions $f|_A: A \rightarrow Y$ and $f_B: f^{-1}(B) \rightarrow B$ are continuous, this is still the case in ω -weakly (resp., ω -closure, ω -strongly) continuous, as it is shown in the next theorem.

Theorem 3.4

If $f: X \rightarrow Y$ is ω -weakly (resp., ω -closure, ω -strongly) continuous, then for any $A \subset X$ and any $B \subset Y$ the restrictions $f|_A: A \rightarrow Y$ and $f_B: f^{-1}(B) \rightarrow B$ are ω -weakly (resp., ω -closure, ω -strongly) continuous.

Proof: Let $x \in X$ and let V be any open set containing f(x) in Y. Since $A \subset X$, then $x \in X$, since f is ω -weakly (resp., ω -closure, ω -strongly) continuous, there is an open set U containing x in X such that $f(U) \subseteq cl^{\omega}(V)$ (resp., $f(cl^{\omega}(U)) \subseteq cl^{\omega}(V)$, $f(cl^{\omega}(U)) \subseteq V)$. Also $A \cap U$ is an open set containing x in A such that $A \cap U \subseteq U$ and $cl^{\omega}(A \cap U) \subseteq cl^{\omega}(U)$, so that $f(A \cap U) \subseteq f(U)$ and $f(cl^{\omega}(A \cap U)) \subseteq f(cl^{\omega}(U))$. Therefore, there is an open set $A \cap U$ containing x in A such hat $f(A \cap U) \subseteq cl^{\omega}(V)$ (resp., $f(cl^{\omega}(A \cap U)) \subseteq cl^{\omega}(V)$, $f(cl^{\omega}(A \cap U)) \subseteq V$). Thus $f|_A$ is ω -weakly (resp., ω -closure, ω -strongly) continuous.

The proof of $f_B: f^{-1}(B) \rightarrow B$ is ω -weakly (resp., ω -closure, ω -strongly) continuous similar to the proof $f|_A: A \rightarrow Y$, so it is omitted.

Also it is will-known that if $f: X \rightarrow Y$ is continuous, then $f_{f(X)}: X \rightarrow f(X)$ is continuous. This is not the case in ω -weakly (ω -closure) continuous even over a ω -Urysohn space as it is shown in the next example, but it is true for ω -strongly continuous as it is shown in theorem (3.6).

Example 3.5

Let P be the upper half of plane and L be the x-axis. Let $X=P \cup L$. If τ_{hdis} is the half disc topology on X and τ_r be the relative topology that X inherits by virtue of being a subspace of IR^2 . The identity function $f:(X, \tau_r) \rightarrow (Y, \tau_{hdis})$ is ω -weakly (ω -closure) continuous but not continuous. And $f:(L,\tau_r) \rightarrow (X, \tau_{hdis})$ is ω -weakly (ω -closure) continuous, but $f:(L,\tau_r) \rightarrow (L, \tau_{hdis})$ is not ω -weakly (ω -closure) continuous.

Theorem 3.6

363

5-6 May 2010

Let $f: X \rightarrow Y$ be ω -strongly continuous, then $f_{f(X)}: X \rightarrow f(X)$ is ω -strongly continuous.

Proof: Let $x \in X$ and let V be any open set containing f(x) in f(X), also in Y because $f(X)\subseteq Y$. Since f is ω -strongly continuous, there is an open set U containing x in X such that $f(cl^{\omega}(U))\subseteq V$, hence $f_{f(X)}$ is ω -strongly continuous.

Now we will compare between diferent forms of generalizations continuity.

Theorem 3.7

Let $f: X \rightarrow Y$ be a ω -strongly continuous. Then f is continuous.

Proof: Let $x \in X$ and let V be any open set containing f(x) in Y. Since f is ω -strongly continuous, there is an open set U containing x in X such that $f(cl^{\omega}(U))\subseteq V$. Since $U\subseteq cl^{\omega}(U)$. Then $f(U)\subseteq f(cl^{\omega}(U))$, therefore $f(U)\subseteq V$. Hence f is continuous.

The converse of the above theorem is not true, as it is shown in the next example.

Example 3.8

Let (IR, τ) where τ is the topology with basis whose members are of the form (a, b) and (a, b)-N, N={1/n; $n \in Z^+$ }. Let $f: (IR, \tau) \to (IR, \tau)$, f(x)=x, then f is continuous but not ω -strongly continuous.

Theorem 3.9

Let $f: X \rightarrow Y$ be a continuous, then f is ω -closure continuous.

Proof: Let $x \in X$ and let V be any open set containing f(x) in Y. Since f is continuous, there is an open set U containing x in X such that $f(U) \subseteq V$. Hence $cl^{\omega}f(U) \subseteq cl^{\omega}(V)$. To show, $f(cl^{\omega}(U)) \subseteq cl^{\omega}(f(U))$, if $y \notin cl^{\omega}(f(U))$ there is nbd V_1 of y such that $V_1 \cap f(U)$ countable, also $f^{-1}(V_1)$ is a nbd for some $x \in f^{-1}(y)$ such that $f^{-1}(V_1) \cap U$ countable, then $x \notin cl^{\omega}(U)$ and $f(x) = y \notin f(cl^{\omega}(U))$. Therefore $f(cl^{\omega}U) \subseteq cl^{\omega}(V)$. Hence f is ω -closure continuous.

The converse of the above theorem is not true, as it is shown in the next example.

Example 3.10

Let X=[0, 1] with topology τ_{cof} consisting of the empty set together with all sets whose complements are finite, let Y=[0, 1] with topology τ_{coco} consisting of the empty set together with all sets whose complements are countable. Let $f: (X,\tau_{cof}) \rightarrow (Y,\tau_{coco})$ be the identity function, then f is ω -closure continuous since for every nonemty open set U in Y, $cl^{\omega}U=Y$. It is clear that for every $x \in X$, f is not continuous at x. Hence f is not continuous.

364

5-6 May 2010

Theorem 3.11

Let $f: X \rightarrow Y$ be ω -closure continuous, then f is ω -weakly continuous.

Proof: Let $x \in X$ and let V be an open set containing f(x) in Y. Since f is ω -closure continuous, there is an open set U containing x in X such that $f(cl^{\omega}(U))\subseteq cl^{\omega}(V)$, since $U\subseteq cl^{\omega}(U)$, then $f(U)\subseteq f(cl^{\omega}(U))$, therefore $f(U)\subseteq cl^{\omega}(V)$. Hence f is ω -weakly continuous.

The converse of the above theorem is not true, as it is shown in the next example.

Example 3.12

Let X=(1, 5) with topology $\tau_X=\{\phi, (3, 4), (3, 5), (1, 4), X\}$ and let Y=(-5, -1) with topology $\tau_Y=\{\phi, (-4, -3), (-2, -1), (-5, -3), (-4, -3)\cup (-2, -1), (-5, -3)\cup (-2, -1), (-4, -1), Y\}$. Define $g:(X, \tau_X)\rightarrow (Y, \tau_Y)$, by g(x)=-x. Then g is ω -weakly continuous but not ω -closure continuous.

Therefore, ω -strongly continuous \Rightarrow continuous \Rightarrow ω -closure continuous \Rightarrow ω -weakly continuous, but not conversely.

It is well-known that the composition of continuous function is continuous. Similar results hold for ω -closure and ω -strongly continuous but it is not true for ω -weakly continuous.

Theorem 3.13

Let $f: X \rightarrow Y$ be ω -strongly continuous and let $g: Y \rightarrow Z$ be ω -strongly continuous. Then gof: $X \rightarrow Z$ is ω -strongly continuous.

Proof: Let $x \in X$ and let W open set containing (gof)(x) in Z, since g is ω -strongly continuous, there is an open set V containing f(x) in Y such that $g(cl^{\omega}(V))\subseteq W$. Since f is ω -strongly continuous, there exists an open set U of x in X such that $f(cl^{\omega}(U))\subseteq V$, since $V\subseteq cl^{\omega}(V)$, then $f(cl^{\omega}(U))\subseteq cl^{\omega}(V)$, so $g(f(cl^{\omega}(U)))\subseteq g(cl^{\omega}(V))$ and $(gof)(cl^{\omega}(U))\subseteq g(cl^{\omega}(V))$. Therefore, there is an open set U containing x in X such that $(gof)(cl^{\omega}(U))\subseteq W$ and gof is ω -strongly continuous.

The proofs of next theorems are similar to that proof of theorem (3.13) and thus will be omitted.

Theorem 3.14

Let $f: X \rightarrow Y$ be ω -closure continuous and let $g: Y \rightarrow Z$ be ω -closure continuous. Then $gof: X \rightarrow Z$ is ω -closure continuous.

Theorem 3.15

Let $f: X \rightarrow Y$ be ω -closure continuous and let $g: Y \rightarrow Z$ be ω -strongly continuous. Then gof: $X \rightarrow Z$ is ω -strongly continuous.

Theorem 3.16

Let $f: X \rightarrow Y$ be ω -weakly continuous and let $g: Y \rightarrow Z$ be ω -strongly continuous. Then gof: $X \rightarrow Z$ is continuous.

365

5-6 May 2010

Theorem 3.17

Let $f: X \rightarrow Y$ be ω -weakly continuous and let $g: Y \rightarrow Z$ be ω -closure continuous. Then $gof: X \rightarrow Z$ is ω -weakly continuous.

Theorem 3.18

Let $f: X \rightarrow Y$ be continuous and let $g: Y \rightarrow Z$ be ω -weakly continuous. Then $gof: X \rightarrow Z$ is ω -weakly continuous.

The next example shows that the continuity of f in last theorem can not be weakened into ω -closure continuous, and it also shows that the composition of ω -weakly continuous is not to be ω -weakly continuous.

Example 3.19

In example (3.12) it is show that g is ω -weakly continuous but not ω -closure continuous. Define $f:(IR,\,\tau_u)\to (X,\tau_X)$, where τ_u is the usual topology on IR by $f(x=rational)=\frac{5}{2}+\frac{1}{\pi}tan^{-1}x$,

 $f(x=irrational) = \frac{9}{2} + \frac{1}{\pi} tan^{-1} x$. Then f is ω-closure continuous but not continuous, and gof is not ω-weakly continuous.

Main Results.

The second new concepts in this paper are given now.

Definition 4.1

A point x of a space X is called almost condensation point of the set $A \subseteq X$ iff $cl^{\omega}(U) \cap A \neq \phi$ for every open set U containing x. The set of all almost condensation points of A is called almost ω -closure of A and denoted by $al^{\omega}(A)$. A subset A of a space X is called almost ω -closed iff $A=al^{\omega}(A)$. The complement of almost ω -closed set is called almost ω -open. Similarly, the almost ω -interior of a set A in X and denoted by $int^{\omega}(A)$ is $\{x \in X : cl^{\omega}(U) \subseteq A \text{ for some open set U containing } x \}$ i.e., $al^{\omega}(U) \subseteq A \text{ for some open set U containing } x .$ A subset A of a space X is called almost ω -open iff $A=int^{\omega}(A)$. Clearly every almost ω -closed (almost ω -open) is closed (open).

Definition 4.2

A function $f: X \rightarrow Y$ is called almost ω -weakly (resp., ω -closure, ω -strongly) continuous, if for each point $x \in X$ and every open set V of f(x) in Y, there exists an open set U containing x in X such that $f(U) \subseteq al^{\omega}(V)$ (resp., $f(al^{\omega}(U)) \subseteq al^{\omega}(V)$).

Clearly $cl(A) \subseteq al^{\omega}(A)$

By analogue of definition closure compact in (7) we will generalization this definition as follows.

366

5-6 May 2010

Definition 4.3

A space X is called ω -closure compact if for every open cover of X, there exists a finite subcollection whose ω -closures cover X.

Theorem 4.4

An almost ω -closed subset of ω -closure compact space is ω -closure compact.

Proof: Let A be almost ω -closed subset of ω -closure compact space X and let \mathcal{A} be an open cover of A. Since X\A is almost ω -open, then for each $x \in X \setminus A$ there exists an open set U_x such that $cl^{\omega}(U_x) \subseteq X \setminus A$. Thus $\mathcal{B} = \mathcal{A} \cup \{U_x : x \in X \setminus A\}$ is an open cover of X. Since X is ω -closure compact, there exists a finite subcollection \mathcal{C} of \mathcal{B} whose ω -closures cover X. Hence $\mathcal{C} \cap \mathcal{A}$ is a finite subcollection of \mathcal{A} whose ω -closures cover A, proving that A is ω -closure compact.

Corollary 4.5

Every clopen subset of a ω -closure compact space is ω -closure compact.

Theorem 4.6

Let $f: X \rightarrow Y$. Then the following conditions are equivalent:

- (a) f(al[∞](A))⊆cl(f(A)), for every A⊂X.
- (b) The inverse image of every closed set is almost ω-closed.
- (c) The inverse image of every open set is almost ω-open.
- (d) f if almost ω-strongly continuous.

Proof: (a) \Rightarrow (b) Let B be a closed subset of Y and let A=f⁻¹(B). Let $x \in al^{\omega}(A)$, then $f(x) \in f(al^{\omega}(A)) \subseteq cl(f(A)) \subseteq cl(B) = B$, therefore $x \in f^{-1}(B) = A$. Thus $al^{\omega}(A) = A$.

- (b)⇒(c) Let O be an open subset of Y and thus Y\O is closed, then f⁻¹(Y\O)=X\f⁻¹(O) is almost ω-closed and thus f⁻¹(O) is almost ω-open.
- (c) \Rightarrow (d) Let $x \in X$ and let V be an open set of f(x) in Y. By hypothesis, it follows that $f^{-1}(V)$ is almost ω -open and thus there exists an open set U of x such that $al^{\omega}(U) \subseteq f^{-1}(V)$. Thus $f(al^{\omega}(U)) \subseteq V$, proving that f is almost ω -strongly continuous.
- (d) \Rightarrow (a) Let $f: X \rightarrow Y$ be almost ω -strongly continuous and let $x \in al^{\omega}(A)$. Let V be an open set containing f(x). By almost ω -strongly continuous of f there exists an open set U containing x such that $f(al^{\omega}(U)) \subseteq V$. Therefore $al^{\omega}(U)$ meets A and thus V meets f(A). Hence $f(x) \in cl(A)$.

Corollary 4.7

Let $f: X \rightarrow Y$ be almost ω -strongly continuous where Y is T_1 -space. Then f has almost ω -closure point inverses.

367

5-6 May 2010

The hypothesis in the above corollary that Y is a T₁-space can't be weakened into T₀-space as shown in the next example.

Example 4.8

Let (IR, τ) where τ is the lower limit topology and (IR, τ_r) where τ_r is the right ray topology. Define $f: (IR, \tau) \rightarrow (IR, \tau_r)$ as follows f(x)=0, for all x<0, f(x)=1, for all $x\geq 0$. Then f is almost ω -strongly continuous, and $\{0\}$ is compact but $f^{-1}(0)=(-\infty, 0)$ is not even closed.

Theorem 4.9

Let $f: X \rightarrow Y$ be almost ω -closure continuous. Then the following holds:

- (a) f(al[∞](A))⊆al[∞](f(A)), for every A⊂X.
- (b) The inverse image of every almost ω-closed set is almost ω-closed.
- (c) The inverse image of every almost ω-open set is almost ω-open.

Proof: (a) Let $f: X \rightarrow Y$ be almost ω -closure continuous and let $x \in al^{\omega}(A)$. Let V be an open set containing f(x) in Y. By almost ω -closure continuous of f there exists an open set U containing x such that $f(al^{\omega}(U)) \subseteq al^{\omega}(V)$. Therefore, $al^{\omega}(U)$ meets A and thus $al^{\omega}(V)$ meets f(A). Hence $f(x) \in al^{\omega}(f(A))$.

- (b) Let B be almost ω -closed set of Y and let $A=f^{-1}(B)$. Let $x \in f^{-1}(B)$, by part (a), $f(x) \in f(al^{\omega}(A)) \subseteq al^{\omega}(f(A)) \subseteq al^{\omega}(B) = B$. Therefore $x \in f^{-1}(B) = A$. Thus $al^{\omega}(A) = A$.
- (c) Let O be almost ω -open subset of Y and thus Y\O is almost ω -closed. Then $f^{-1}(Y\setminus O)=X\setminus f^{-1}(O)$ is almost ω -closed and thus $f^{-1}(O)$ is almost ω -open.

Corollary 4.10

Let $f: X \rightarrow Y$ be almost ω -closure continuous where Y is a Urysohn space. Then f has almost ω -closure point inverses.

The hypothesis in the above corollary that Y is a Urysohn space can't be weakened into T₁-space as shown in the next example.

Example 4.11

Let (IR, τ_{cof}) where τ_{cof} is the cofinite topology. Let $f: (IR, \tau_{cof}) \rightarrow (IR, \tau_{cof})$ be the identity function. Then f is almost ω -closure continuous, but $f^{-1}(\{0\})$ is not almost ω -closed.

Theorem 4.12

Let $f: X \rightarrow Y$ be almost ω -weakly continuous. Then the following holds:

- (a) f(cl(A))⊆al[∞](f(A)), for every A⊂X.
- (b) The inverse image of every almost ω-closed set is closed.
- (c) The inverse image of every almost ω-open set is open.

5-6 May 2010

Proof: (a) Let $f: X \rightarrow Y$ be almost ω -weakly continuous and let $x \in cl(A)$. Let V be an open set containing f(x) in Y. By almost ω -weakly continuous of f there exists an open set U containing x such that $f(U) \subseteq al^{\omega}(V)$. Therefore, U meets A and thus $al^{\omega}(V)$ meets f(A). Hence $f(x) \in al^{\omega}(f(A))$.

(b) Let B be almost ω -closed set of Y and let $A=f^{-1}(B)$. Let $x \in cl(A)$, by part (a), $f(x) \in f(cl(A)) \subseteq al^{\omega}(f(A)) \subseteq al^{\omega}(B) = B$. Therefore $x \in f^{-1}(B) = A$. Thus cl(A) = A.

(c) Let O be almost ω -open subset of Y and thus Y\O is almost ω -closed. Then $f^{-1}(Y\setminus O)=X\setminus f^{-1}(O)$ is closed and thus $f^{-1}(O)$ is open.

Corollary 4.13

Let $f: X \rightarrow Y$ be almost ω - weakly continuous where Y is a Urysohn space. Then f has closed point inverses.

The hypothesis in the above corollary that Y is a Urysohn space can't be weakened into T₁-space as shown in the next example.

Example 4.14

Let (IR, τ_u) where τ_u is the usual topology and (IR, τ_{coco}) where τ_{coco} is the cocountable topology. Define $f:(IR, \tau_u) \rightarrow (IR, \tau_{coco})$ as follows f(x=rational)=0, f(x=irrational)=1. Then f is almost ω -weakly continuous, and $\{0\}$ is compact but $f^{-1}(\{0\})$ is neither closed nor ω -closure compact.

References.

- Frechet M., 1910, Les dimensions d'un ensemble abstrait, Math. Ann., 68, p.145-168.
- Bourbaki N., 1966, General Topology, Part I, Addison-Wesly, Reding, Mass.
- Chew J. and Tong J., Some Remarks on Weak continuity, American Mathematical Monthly, 98, 931-934, (1991).
- Saleh M. A., Almost Continuity Implies Closure Continuity, Glasgow Math. J., June, to appear, (1998).
- Srivastava A. and Pawar A., Pairwise Strongly θ-continuous Functions in Bitopological Spaces, Universitatea Din Bacau, Studiisi Cercetari Stiintifice, Seria: Matematica, 16, 239-250, (2006).
- Hdeib H. Z., 1982, ω-closed Mappinds, Revista Colombian a de mathematics, Vol. XVI, p.65-78.
- Alexandroff P. and Urysohn P., 1929, Memoive Sur les espaces topologiques compacts, Verh. Kon. Akad. Van Weten. Te Amsterdam, 14, p.1-96.