Preferred Language
Articles
/
bsj-5772
Projective MDS Codes Over GF(27)‎
...Show More Authors

MDS code is a linear code that achieves equality in the Singleton bound, and projective MDS (PG-MDS) is MDS code with independents property of any two columns of its generator matrix.   In this paper, elementary methods for modifying a PG-MDS code of dimensions 2, 3, as extending and lengthening, in order to find new incomplete PG-MDS codes have been used over . Also, two complete PG-MDS codes over  of length  and 28 have been found.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Dec 01 2023
Journal Name
Baghdad Science Journal
Almost Projective Semimodules
...Show More Authors

       The basis of this paper is to study the concept of almost projective semimodules as a generalization of projective semimodules. Some of its characteristics have been discussed, as well as some results have been generalized from projective semimodules.

View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Tue Jan 01 2013
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
Classification and Construction of (k,3)-Arcs on Projective Plane Over Galois Field GF(7)
...Show More Authors

The purpose of this work is to study the classification and construction of (k,3)-arcs in the projective plane PG(2,7). We found that there are two (5,3)-arcs, four (6,3)-arcs, six (7,3)arcs, six (8,3)-arcs, seven (9,3)-arcs, six (10,3)-arcs and six (11,3)-arcs. All of these arcs are incomplete. The number of distinct (12,3)-arcs are six, two of them are complete. There are four distinct (13,3)-arcs, two of them are complete and one (14,3)-arc which is incomplete. There exists one complete (15,3)-arc.

Publication Date
Tue Jan 01 2013
Journal Name
Journal Of College Of Education
The Construction of Complete (k, n)-arcs in 3-Dimensional Projective Space Over Galois Field GF (4)
...Show More Authors

In this work, we construct the projectively distinct (k, n)-arcs in PG (3, 4) over Galois field GF (4), where k 5, and we found that the complete (k, n)-arcs, where 3 n 21, moreover we prove geometrically that the maximum complete (k, n)-arc in PG (3, 4) is (85, 21)-arc. A (k, n)-arcs is a set of k points no n+ 1 of which are collinear. A (k, n)-arcs is complete if it is not contained in a (k+ 1, n)-arcs

Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
The construction of Complete (kn,n)-arcs in The Projective Plane PG(2,5) by Geometric Method, with the Related Blocking Sets and Projective Codes
...Show More Authors

A (k,n)-arc is a set of k points of PG(2,q) for some n, but not n + 1 of them, are collinear. A (k,n)-arc is complete if it is not contained in a (k + 1,n)-arc. In this paper we construct complete (kn,n)-arcs in PG(2,5), n = 2,3,4,5, by geometric method, with the related blocking sets and projective codes.

View Publication Preview PDF
Crossref
Publication Date
Wed Aug 10 2011
Journal Name
Ibn Al- Haitham J. For Pure & Appl. S Ci.
A Complete (k,r)-Cap in PG(3,p) Over Galois Field GF(4)
...Show More Authors

The aim of t his p aper is t o const ruct t he (k,r)-caps in t he p rojective 3-sp ace PG(3,p ) over Galois field GF(4). We found t hat t he maximum comp let e (k,2)-cap which is called an ovaloid, exist s in PG(3,4) when k = 13. Moreover t he maximum (k,3)-cap s, (k,4)-cap s and (k,5)-caps.

Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
A complete (48, 4)-arc in the Projective Plane Over the Field of Order Seventeen
...Show More Authors

            The article describes a certain computation method of -arcs to construct the number of distinct -arcs in  for . In this method, a new approach employed to compute the number of -arcs and the number of distinct arcs respectively. This approach is based on choosing the number of inequivalent classes } of -secant distributions that is the number of 4-secant, 3-secant, 2-secant, 1-secant and 0-secant in each process. The maximum size of -arc that has been constructed by this method is . The new method is a new tool to deal with the programming difficulties that sometimes may lead to programming problems represented by the increasing number of arcs. It is essential to reduce the established number of -arcs in each cons

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Journal Of Engineering
Performance Evaluation of Scalar Multiplication in Elliptic Curve Cryptography Implementation using Different Multipliers Over Binary Field GF (2233)
...Show More Authors

This paper presents a point multiplication processor over the binary field GF (2233) with internal registers integrated within the point-addition architecture to enhance the Performance Index (PI) of scalar multiplication. The proposed design uses one of two types of finite field multipliers, either the Montgomery multiplier or the interleaved multiplier supported by the additional layer of internal registers. Lopez Dahab coordinates are used for the computation of point multiplication on Koblitz Curve (K-233bit). In contrast, the metric used for comparison of the implementations of the design on different types of FPGA platforms is the Performance Index.

The first approach attains a performance index

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sun Dec 18 2022
Journal Name
Journal Of The College Of Basic Education
A (k,ℓ) Span in Three Dimensional Projective Space PG(3,p) Over Galois Field where p=4
...Show More Authors

الغرض من هذا العمل هو دراسة الفضاء الإسقاطي ثلاثي الأبعاد PG (3، P) حيث p = 4 باستخدام المعادلات الجبرية وجدنا النقاط والخطوط والمستويات وفي هذا الفضاء نبني (k، ℓ) -span وهي مجموعة من خطوط k لا يتقاطع اثنان منها. نثبت أن الحد الأقصى للكمال (k، ℓ) -span في PG (3،4) هو (17، ℓ) -span ، وهو ما يساوي جميع نقاط المساحة التي تسمى السبريد.

View Publication
Crossref (1)
Crossref
Publication Date
Wed Feb 22 2023
Journal Name
Iraqi Journal Of Science
Small Pointwise M-Projective Modules
...Show More Authors

Let R be a ring and let M be a left R-module. In this paper introduce a small pointwise M-projective module as generalization of small M- projective module, also introduce the notation of small pointwise projective cover and study their basic properties.
.

View Publication Preview PDF
Publication Date
Sun Dec 06 2009
Journal Name
Baghdad Science Journal
Decoding Reed- Muller Codes by Using Hadamard Matrices
...Show More Authors

This paper discusses the problem of decoding codeword in Reed- Muller Codes. We will use the Hadamard matrices as a method to decode codeword in Reed- Muller codes.In addition Reed- Muller Codes are defined and encoding matrices are discussed. Finally, a method of decoding is explained and an example is given to clarify this method, as well as, this method is compared with the classical method which is called Hamming distance.

View Publication Preview PDF
Crossref