The aim of t his p aper is t o const ruct t he (k,r)-caps in t he p rojective 3-sp ace PG(3,p ) over Galois field GF(4). We found t hat t he maximum comp let e (k,2)-cap which is called an ovaloid, exist s in PG(3,4) when k = 13. Moreover t he maximum (k,3)-cap s, (k,4)-cap s and (k,5)-caps.
الغرض من هذا العمل هو دراسة الفضاء الإسقاطي ثلاثي الأبعاد PG (3، P) حيث p = 4 باستخدام المعادلات الجبرية وجدنا النقاط والخطوط والمستويات وفي هذا الفضاء نبني (k، ℓ) -span وهي مجموعة من خطوط k لا يتقاطع اثنان منها. نثبت أن الحد الأقصى للكمال (k، ℓ) -span في PG (3،4) هو (17، ℓ) -span ، وهو ما يساوي جميع نقاط المساحة التي تسمى السبريد.
In this work, we construct the projectively distinct (k, n)-arcs in PG (3, 4) over Galois field GF (4), where k 5, and we found that the complete (k, n)-arcs, where 3 n 21, moreover we prove geometrically that the maximum complete (k, n)-arc in PG (3, 4) is (85, 21)-arc. A (k, n)-arcs is a set of k points no n+ 1 of which are collinear. A (k, n)-arcs is complete if it is not contained in a (k+ 1, n)-arcs
The purpose of this work is to study the classification and construction of (k,3)-arcs in the projective plane PG(2,7). We found that there are two (5,3)-arcs, four (6,3)-arcs, six (7,3)arcs, six (8,3)-arcs, seven (9,3)-arcs, six (10,3)-arcs and six (11,3)-arcs. All of these arcs are incomplete. The number of distinct (12,3)-arcs are six, two of them are complete. There are four distinct (13,3)-arcs, two of them are complete and one (14,3)-arc which is incomplete. There exists one complete (15,3)-arc.
In this paper, the packing problem for complete ( 4)-arcs in is partially solved. The minimum and the maximum sizes of complete ( 4)-arcs in are obtained. The idea that has been used to do this classification is based on using the algorithm introduced in Section 3 in this paper. Also, this paper establishes the connection between the projective geometry in terms of a complete ( , 4)-arc in and the algebraic characteristics of a plane quartic curve over the field represented by the number of its rational points and inflexion points. In addition, some sizes of complete ( 6)-arcs in the projective plane of order thirteen are established, namely for = 53, 54, 55, 56.
The article describes a certain computation method of -arcs to construct the number of distinct -arcs in for . In this method, a new approach employed to compute the number of -arcs and the number of distinct arcs respectively. This approach is based on choosing the number of inequivalent classes } of -secant distributions that is the number of 4-secant, 3-secant, 2-secant, 1-secant and 0-secant in each process. The maximum size of -arc that has been constructed by this method is . The new method is a new tool to deal with the programming difficulties that sometimes may lead to programming problems represented by the increasing number of arcs. It is essential to reduce the established number of -arcs in each cons
... Show MoreIn this work, we construct projectively distinct (k,3)-arcs in the projective plane PG(2,9) by applying a geometrical method. The cubic curves have been been constructed by using the general equation of the cubic. We found that there are complete (13,3)-arcs, complete (15,3)-arcs and we found that the only (16,3)-arcs lead to maximum completeness
MDS code is a linear code that achieves equality in the Singleton bound, and projective MDS (PG-MDS) is MDS code with independents property of any two columns of its generator matrix. In this paper, elementary methods for modifying a PG-MDS code of dimensions 2, 3, as extending and lengthening, in order to find new incomplete PG-MDS codes have been used over . Also, two complete PG-MDS codes over of length and 28 have been found.
This paper presents a point multiplication processor over the binary field GF (2233) with internal registers integrated within the point-addition architecture to enhance the Performance Index (PI) of scalar multiplication. The proposed design uses one of two types of finite field multipliers, either the Montgomery multiplier or the interleaved multiplier supported by the additional layer of internal registers. Lopez Dahab coordinates are used for the computation of point multiplication on Koblitz Curve (K-233bit). In contrast, the metric used for comparison of the implementations of the design on different types of FPGA platforms is the Performance Index.
The first approach attains a performance index
... Show More