Preferred Language
Articles
/
bsj-5772
Projective MDS Codes Over GF(27)‎
...Show More Authors

MDS code is a linear code that achieves equality in the Singleton bound, and projective MDS (PG-MDS) is MDS code with independents property of any two columns of its generator matrix.   In this paper, elementary methods for modifying a PG-MDS code of dimensions 2, 3, as extending and lengthening, in order to find new incomplete PG-MDS codes have been used over . Also, two complete PG-MDS codes over  of length  and 28 have been found.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Dec 01 2023
Journal Name
Baghdad Science Journal
Almost Projective Semimodules
...Show More Authors

       The basis of this paper is to study the concept of almost projective semimodules as a generalization of projective semimodules. Some of its characteristics have been discussed, as well as some results have been generalized from projective semimodules.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sun Apr 30 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Classification and Construction of (k,3)-Arcs on Projective Plane Over Galois Field GF(7)
...Show More Authors

  The purpose of this work is to study the classification and construction of (k,3)-arcs in the projective plane PG(2,7). We found that there are two (5,3)-arcs, four (6,3)-arcs, six (7,3)arcs, six (8,3)-arcs, seven (9,3)-arcs, six (10,3)-arcs and six (11,3)-arcs.         All of these arcs are incomplete.         The number of distinct (12,3)-arcs are six, two of them are complete.         There are four distinct (13,3)-arcs, two of them are complete and one (14,3)-arc which is incomplete.         There exists one complete (15,3)-arc.
 

View Publication Preview PDF
Publication Date
Sun Apr 30 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Classification and Construction of (k,3)-Arcs on Projective Plane Over Galois Field GF(9)
...Show More Authors

  In this work, we construct and classify the projectively distinct (k,3)-arcs in PG(2,9), where k ≥ 5, and prove that the complete (k,3)-arcs do not exist, where 5 ≤ k ≤ 13. We found that the maximum complete (k,3)-arc in PG(2,q) is the (16,3)-arc and the minimum complete (k,3)-arc in PG(2,q) is the (14,3)-arc. Moreover, we found the complete (k,3)-arcs between them.

View Publication Preview PDF
Publication Date
Wed May 31 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Sets of Subspaces of a Projective Plane PG(2,q) Over Galois Field GF(q)
...Show More Authors

       In this thesis, some sets of subspaces of projective plane PG(2,q) over Galois field GF(q) and the relations between them by some theorems and examples can be shown.
 

View Publication Preview PDF
Publication Date
Thu May 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Construction and Reverse Construction of the Complete Arcs in the Projective 3-Space Over Galois Field GF(2)
...Show More Authors

  The main purpose of this work is to find the complete arcs in the projective 3-space over Galois field GF(2), which is denoted by PG(3,2), by two methods and then we compare between the two methods

View Publication Preview PDF
Publication Date
Sun Aug 13 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Construction of Complete (k,n)-arcs in the Projective Plane PG(2,11) Over Galois Field GF(11), 3 ï‚£ n ï‚£ 11
...Show More Authors

        The purpose of this work is to construct complete (k,n)-arcs in the projective 2-space PG(2,q) over Galois field GF(11) by adding some points of index zero to complete (k,n–1)arcs 3 ï‚£ n ï‚£ 11.         A (k,n)-arcs is a set of k points no n + 1 of which are collinear.         A (k,n)-arcs is complete if it is not contained in a (k + 1,n)-arc

View Publication Preview PDF
Publication Date
Thu May 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Projective 3-Space Over Galois Field
...Show More Authors

        The purpose of this paper is to give the definition of projective 3-space PG(3,q) over Galois field GF(q), q = pm for some prime number p and some integer m.

        Also, the definition of the plane in PG(3,q) is given and state the principle of duality.

        Moreover some theorems in PG(3,q) are proved.

View Publication Preview PDF
Publication Date
Sun May 14 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A Complete (k,r)-Cap in PG(3,p) Over Galois Field GF(4)
...Show More Authors

   The aim of this paper is to construct the (k,r)-caps in the projective 3-space PG(3,p) over Galois field GF(4). We found that the maximum complete (k,2)-cap which is called an                       ovaloid  , exists in PG(3,4) when k = 13. Moreover the maximum (k,3)-caps, (k,4)-caps and   (k,5)-caps. 

View Publication Preview PDF
Publication Date
Sun Apr 23 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Construction of Complete (kn,n)-Arcs in The Projective Plane PG(2,11) by Geometric Method, with the Related Blocking Sets and Projective Codes
...Show More Authors

   In this paper,we construct complete (kn,n)-arcs in the projective plane PG(2,11),  n = 2,3,…,10,11  by geometric method, with the related blocking sets and projective codes.
 

View Publication Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
The construction of Complete (kn,n)-arcs in The Projective Plane PG(2,5) by Geometric Method, with the Related Blocking Sets and Projective Codes
...Show More Authors

A (k,n)-arc is a set of k points of PG(2,q) for some n, but not n + 1 of them, are collinear. A (k,n)-arc is complete if it is not contained in a (k + 1,n)-arc. In this paper we construct complete (kn,n)-arcs in PG(2,5), n = 2,3,4,5, by geometric method, with the related blocking sets and projective codes.

View Publication Preview PDF
Crossref