The basis of this paper is to study the concept of almost projective semimodules as a generalization of projective semimodules. Some of its characteristics have been discussed, as well as some results have been generalized from projective semimodules.
In this work, the notion of principally quasi- injective semimodule is introduced, discussing the conditions needed to get properties and characterizations similar or related to the case in modules.
Let be an -semimodule with endomorphism semiring Ș. The semimodule is called principally quasi-injective, if every -homomorphism from any cyclic subsemimodule of to can be extended to an endomorphism of .
In this work, we introduced the Jacobson radical (shortly Rad (Ș)) of the endomorphism semiring Ș = ( ), provided that is principal P.Q.- injective semimodule and some related concepts, we studied some properties and added conditions that we needed. The most prominent result is obtained in section three
-If is a principal self-generator semimodule, then (ȘȘ) = W(Ș).
Subject Classification: 16y60
In this work, injective semimodule has been generalized to almost -injective semimodule. The aim of this research is to study the basic properties of the concept almost- injective semimodules. The semimodule is called almost -injective semimodule if, for each subsemimodule A of and each homomorphism : A , either there exists a homomorphism such that = . Or there exists a homomorphism : Y such that = , where Y is nonzero direct summand of , and is the projection map. A semimodule is almost injective semimodule if it is almost injective relative to all semimodules. Every injective semimodule is almost injective semimodule, if is almost –
... Show MoreMDS code is a linear code that achieves equality in the Singleton bound, and projective MDS (PG-MDS) is MDS code with independents property of any two columns of its generator matrix. In this paper, elementary methods for modifying a PG-MDS code of dimensions 2, 3, as extending and lengthening, in order to find new incomplete PG-MDS codes have been used over . Also, two complete PG-MDS codes over of length and 28 have been found.
In modules there is a relation between supplemented and π-projective semimodules. This relation was introduced, explained and investigated by many authors. This research will firstly introduce a concept of "supplement subsemimodule" analogues to the case in modules: a subsemimodule Y of a semimodule W is said to be supplement of a subsemimodule X if it is minimal with the property X+Y=W. A subsemimodule Y is called a supplement subsemimodule if it is a supplement of some subsemimodule of W. Then, the concept of supplemented semimodule will be defined as follows: an S-semimodule W is said to be supplemented if every subsemimodule of W is a supplemen
... Show MoreLet A, and N are a semiring ,and a left A- semimodule, respectively. In this work we will discuss two cases:
- The direct summand of π-projective semi module is π-projective, while the direct sum of two π-projective semimodules in general is not π-projective . The details of the proof will be given.
- We will give a condition under which the direct sum of two π-projective semi modules is π-projective, as well as we also set conditions under which π-projective semi modules are projective.
Throughout this paper, T is a ring with identity and F is a unitary left module over T. This paper study the relation between semihollow-lifting modules and semiprojective covers. proposition 5 shows that If T is semihollow-lifting, then every semilocal T-module has semiprojective cover. Also, give a condition under which a quotient of a semihollow-lifting module having a semiprojective cover. proposition 2 shows that if K is a projective module. K is semihollow-lifting if and only if For every submodule A of K with K/( A) is hollow, then K/( A) has a semiprojective cover.
The aim of this paper is to introduce the concept of Dedekind semimodules and study the related concepts, such as the class of semimodules, and Dedekind multiplication semimodules . And thus study the concept of the embedding of a semimodule in another semimodule.
Throughout this paper, three concepts are introduced namely stable semisimple modules, stable t-semisimple modules and strongly stable t-semisimple. Many features co-related with these concepts are presented. Also many connections between these concepts are given. Moreover several relationships between these classes of modules and other co-related classes and other related concepts are introduced.
The main goal of this paper is to introduce and study a new concept named d*-supplemented which can be considered as a generalization of W- supplemented modules and d-hollow module. Also, we introduce a d*-supplement submodule. Many relationships of d*-supplemented modules are studied. Especially, we give characterizations of d*-supplemented modules and relationship between this kind of modules and other kind modules for example every d-hollow (d-local) module is d*-supplemented and by an example we show that the converse is not true.