The basis of this paper is to study the concept of almost projective semimodules as a generalization of projective semimodules. Some of its characteristics have been discussed, as well as some results have been generalized from projective semimodules.
In this paper, the fuzzy logic and the trapezoidal fuzzy intuitionistic number were presented, as well as some properties of the trapezoidal fuzzy intuitionistic number and semi- parametric logistic regression model when using the trapezoidal fuzzy intuitionistic number. The output variable represents the dependent variable sometimes cannot be determined in only two cases (response, non-response)or (success, failure) and more than two responses, especially in medical studies; therefore so, use a semi parametric logistic regression model with the output variable (dependent variable) representing a trapezoidal fuzzy intuitionistic number.
the model was estimated on simulati
... Show MoreThe mediation system is based on settling the dispute amicably through the intervention of a third party by bringing views closer away from the judiciary, which is an amicable way to settle disputes, which disputants resort to voluntarily, but some Western legislation has begun to impose resorting to mediation to settle disputes compulsorily, to take advantage of its advantages, get rid of the disadvantages of resorting to the judiciary in some disputes, and relieve pressure on the courts.
Faintly continuous (FC) functions, entitled faintly S-continuous and faintly δS-continuous functions have been introduced and investigated via a -open and -open sets. Several characterizations and properties of faintly S-continuous and faintly -Continuous functions were obtained. In addition, relationships between faintly s- Continuous and faintly S-continuous function and other forms of FC function were investigated. Also, it is shown that every faintly S-continuous is weakly S-continuous. The Convers is shown to be satisfied only if the co-domain of the function is almost regular.
The aim of this paper is to derive a posteriori error estimates for semilinear parabolic interface problems. More specifically, optimal order a posteriori error analysis in the - norm for semidiscrete semilinear parabolic interface problems is derived by using elliptic reconstruction technique introduced by Makridakis and Nochetto in (2003). A key idea for this technique is the use of error estimators derived for elliptic interface problems to obtain parabolic estimators that are of optimal order in space and time.
Broyden update is one of the one-rank updates which solves the unconstrained optimization problem but this update does not guarantee the positive definite and the symmetric property of Hessian matrix.
In this paper the guarantee of positive definite and symmetric property for the Hessian matrix will be established by updating the vector which represents the difference between the next gradient and the current gradient of the objective function assumed to be twice continuous and differentiable .Numerical results are reported to compare the proposed method with the Broyden method under standard problems.
In this paper, new concepts which are called: left derivations and generalized left derivations in nearrings have been defined. Furthermore, the commutativity of the 3-prime near-ring which involves some
algebraic identities on generalized left derivation has been studied.
Most of the Weibull models studied in the literature were appropriate for modelling a continuous random variable which assumes the variable takes on real values over the interval [0,∞]. One of the new studies in statistics is when the variables take on discrete values. The idea was first introduced by Nakagawa and Osaki, as they introduced discrete Weibull distribution with two shape parameters q and β where 0 < q < 1 and b > 0. Weibull models for modelling discrete random variables assume only non-negative integer values. Such models are useful for modelling for example; the number of cycles to failure when components are subjected to cyclical loading. Discrete Weibull models can be obta
... Show MoreIn this paper, the Normality set will be investigated. Then, the study highlights some concepts properties and important results. In addition, it will prove that every operator with normality set has non trivial invariant subspace of .
In this paper, some basic notions and facts in the b-modular space similar to those in the modular spaces as a type of generalization are given. For example, concepts of convergence, best approximate, uniformly convexity etc. And then, two results about relation between semi compactness and approximation are proved which are used to prove a theorem on the existence of best approximation for a semi-compact subset of b-modular space.
Semi-parametric models analysis is one of the most interesting subjects in recent studies due to give an efficient model estimation. The problem when the response variable has one of two values either 0 ( no response) or one – with response which is called the logistic regression model.
We compare two methods Bayesian and . Then the results were compared using MSe criteria.
A simulation had been used to study the empirical behavior for the Logistic model , with different sample sizes and variances. The results using represent that the Bayesian method is better than the at small samples sizes.
... Show More